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Abstract
Bus and register management is one of the crucial aspects of ASIC, SoC, or FPGA-based
designs. The problems related to it are well known, and multiple tools or approaches
are already trying to solve or mitigate them. However, all available solutions share the
same register-centric paradigm. A user defines registers and then manually lays out
the data into the registers. Such an approach has its limitations. A description does
not contain information on data spanning multiple registers or data forming a broader
context, procedure arguments, for example. It also does not contain information on the
purpose of the data. As a result, the generated access code is low-level and usually needs
an extra wrapper, which leaves room for potential human mistakes. For instance, it is the
user’s responsibility to guarantee proper access order to registers or to provide an atomic
change of data wider than a single register width.

The thesis proposes a new approach, the functionality-centric approach. In the
functionality-centric approach, the user defines the data with the type of its functionality.
The registers and access code are later implicitly inferred. By defining the functionality
of the data placed in the registers, it is possible to generate more access code, increase
code robustness, improve system design readability, and shorten the implementation pro-
cess.

The thesis includes the specification of the new domain-specific language (Functional
Bus Description Language), presents an example of the advantages of the functionality-
centric approach compared to the register-centric, and provides reasoning for some design
decisions and some compiler implementation details.

Keywords: bus interface, code maintenance, computer languages, control interface, de-
sign automation, design verification, documentation generation, electronic design automa-
tion, EDA, electronic systems, Functional Bus Description Language, FBDL, hardware
design, hardware description language, HDL, hierarchical register description, memory,
programming, register addressing, register synthesis, software generation, system man-
agement
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Streszczenie
Zarządzanie magistralą oraz rejestrami jest jednym z kluczowych aspektów podczas pro-
jektowania układów ASIC, SoC lub systemów wykorzystujących układy FPGA. Problemy
z tym związane są dobrze znane. Istnieje wiele narzędzi oraz sposobów postępowania,
które starają się je rozwiązywać lub niwelować ich wpływ. Wszystkie dostępne rozwiąza-
nia cechuje jednak te same podejście do zagadnienia, są one zorientowane na rejestry.
Użytkownik pierw definiuje rejestr, a dopiero w kolejnym kroku ręcznie rozmieszcza w
nim dane. Takie podejście zawiera pewne ograniczenia. Opis rejestrów nie zawiera in-
formacji na temat danych znajdujących się w więcej niż jednym rejestrze, czy na temat
danych będących częścią jakiegoś szerszego kontekstu, jak np. argumenty procedur. Opis
nie zawiera również informacji na temat funkcjonalności jakie poszczególne dane dostar-
czają. W rezultacie automatycznie wygenerowany kod jest niskopoziomowy i wymaga
ręcznej implementacji kodu opakowującego. To z kolei przekłada się na pozostawienie
miejsca na potencjalne ludzkie pomyłki. Przykładowo, to użytkownik odpowiedzialny
jest za zapewnienie poprawnej kolejności dostępów do rejestrów, czy za zapewnienie ato-
mowości zmian wartości danych, których szerokość przekracza szerokość pojedynczego
rejestru.

W rozprawie zaprezentowano nowe podejście zorientowane na funkcjonalność danych.
W podejściu tym użytkownik definiuje dane wraz z ich typem funkcjonalności. Na ich
podstawie są następnie automatycznie generowane rejestry wraz z kodem dostępowym.
Definiowanie funkcjonalności danych pozwala na zwiększenie ilości kodu generowanego
automatycznie, i zmniejszenie ilości kodu pisanego ręcznie. To z kolei zwiększa odporność
kodu na błędy, poprawia czytelność projektu i skraca czas spędzony na implementacji.

Praca obejmuje specyfikację jezyka specyficznego dla danej domeny (Język Opisu
Funkcjonalnych Magistral), opis korzyści wynikających z podejścia zorientowanego na
funkcjonalność, uzasadnienie niektórych decyzji projektowych oraz omówienie niektórych
ze szczegółów implementacji kompilatora.

Słowa kluczowe: adresowanie rejestrów, automatyzacja projektowania, magistrala, gen-
eracja oprogramowania, generacja dokumentacji, hierarchiczny opis rejestrów, interfejs
sterowania, język opisu sprzętu, języki programowania, magistrala, programowanie, pro-
jektowanie sprzętu, synteza rejestrów, systemy elektroniczne, utrzymanie kodu, wery-
fikacja projektu, zarządzanie systemem
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Preface

Context and motivation of the dissertation
Designing, implementing, and integrating FPGA-based designs with a software stack
running on a traditional CPU or a firmware stack running on an MCU poses a relatively
complex technological, organizational, and methodical task. DAQ systems for HEP ex-
periments, among military, medical, and digital entertainment systems, are examples of
areas where such tasks are omnipresent and inevitable.

The author of the dissertation, for four years, has been taking part in the design and
implementation process of the gateware, firmware, and software for the DAQ system
for the CBM [1] experiment that has been prepared at the GSI Helmholtzzentrum für
Schwerionenforschung in Darmstadt [2].

Design environments for DAQ systems in HEP experiments are very peculiar. The whole
design and implementation take relatively long, from a few to even a dozen or so years.
The engineering teams are international. The educational background is varied. There
are physicists, electronics engineers, computer science engineers, system administrators,
etc. The spectrum of the members’ ages is vast, ranging from first-year Ph.D. students to
halftime retired workers. Most members participate in multiple projects or have academic
duties, so the time they devote to a particular task is limited. During the development
phase, there is also a rotation of the employees. As a whole system is extensive and
complex and must work reliably, it is natural that the preliminary prototypes vary sig-
nificantly from the final solutions. All of this leads to implementing the same or similar
functionalities multiple times. For example, a programming language change after the
prototyping stage forces such reimplementation.

During the first two years of the studies, the author explored how to make such complex
and multidimensional projects more manageable and verifiable. Trying to incorporate
some industrial methodologies, such as UVM framework or formal verification, simply
failed. There were at least several reasons for this. To name a few:

• Lack of free, open source tools or limited functionality of such tools. Paid commer-
cial tools have expensive licenses.

• Too steep learning curve and lack of learning resources. The EDA tools appear to
be inadequate for engineers who do not use them every day for eight hours. Instead
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of focusing on the design and fundamental problems, one spends time learning how
to use the EDA tools, each with a distinct user interface.

Throughout the work, it turned out that another policy is suited much better in such
a diverse environment. Instead of incorporating cumbersome industrial standards that
need expensive licenses, one can automatically generate as much gateware, firmware, and
software as possible. As long as the description format is easily readable by a human, the
work is moving forward surprisingly fast.

Based on this observation, the author has been looking for a way to enhance and extend
existing generic methods and tools commonly used for gateware, firmware, and software
code generation. During the work on the AGWB [3], and after using it for a few months,
the author noticed that a relatively large amount of code was still repeatedly implemented
manually. That manually implemented code had some common characteristics and could
be easily automatically generated. The only thing that needed to be added to generate
it was the information on the functionality that a given data must serve. That required
shifting the accent from the register (register-centric approach) to the data or, more
precisely, to the functionality of the data (functionality-centric approach). After analyzing
state-of-the-art tools and approaches, the author concluded that no solution is based on
the data functionality paradigm. The author has decided that the idea is worth trying,
and the FBDL realizes this idea.

Structure of the thesis
The thesis consists of 10 chapters and 8 additional appendices. Appendix G is the spec-
ification of the newly defined Functional Bus Description Language. It is advised to at
least skim it before reading the dissertation and later return to it while reading chapter
5. The specification also includes definitions of some terms used in the thesis.

Chapter 1 introduces the bus and register management problem. It provides a simplified
example that is used to present some of the subproblems and analyze how they are
solved in the register-centric (typical) approach and functionality-centric (newly proposed)
approach.

Chapter 2 briefly discusses on-chip interconnect architectures. It uses AMBA AXI and
Wishbone buses to present two distinct bus control logics. It also discusses the NoC
technology, a natural progression of traditional on-chip buses.

Chapter 3 is the prior art analysis. It includes only solutions following the register-centric
paradigm. The author proposes a paradigm shift to the functionality, and no solution
following this approach has been found.
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Chapter 4 contains the definition of the thesis. Then, the aim and scope of the dissertation
is described.

Chapter 5 serves as an extension to the FBDL specification. It discusses all supported
functionalities, and unlike the specification, it focuses on answering the “why” questions
instead of the “how” questions. It is recommended to read subsections of this chapter
concurrently with the corresponding subsections of the FBDL specification (first specifi-
cation, then dissertation) or to read the whole specification first.

Chapter 6 discusses the most common features present in the register-centric tools but
absent in the FBDL. The focus is on reasoning why they are absent at the current stage
of the language.

Chapter 7 describes the implementation of the compiler for the FBDL. As the compre-
hensive description would be relatively long and include aspects irrelevant from the thesis
point of view, the chapter describes only the overall structure and focuses on some general
details that any FBDL-compliant compiler will likely have to face.

Chapter 8 compares two descriptions of the same example system. One of the descriptions
follows the register-centric approach, while the other follows the functionality-centric ap-
proach. Both descriptions have been tested using co-simulation testbenches. They have
also been synthesized to compare resource utilization. The chapter contains multiple
listings and waveforms presenting how the functionality-centric approach can decrease
the probability of human mistakes and shorten the time required to implement the sys-
tem.

Chapter 9 provides information on the project in which FBDL has been used. However,
due to the proprietary nature of the project, no internal details are revealed.

Chapter 10 summarizes the advantages of describing system bus registers using the
functionality-centric approach instead of the register-centric.

The thesis has numerous code snippets and listings used as examples to illustrate problems
better or explain solutions. The VHDL language has been chosen for the gateware, and
the Python language has been chosen for the software. However, all presented concepts
are programming language agnostic, so any language could be selected, and the reasoning
would remain valid.
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1 Introduction
Most ASIC, FPGA, or SoC designs, for sure the more complex ones, have some kind of
internal bus. Such a bus is often referred to as a “system bus,” “local bus,” “on-chip bus,”
“interconnect bus,” or “on-chip interconnect bus” (the last one is the most formal and
probably the most appropriate). The primary role of the bus is to provide an organized
and structured manner for connecting independent modules within the chip. It also
serves as a gateway to access the gateware or hardware design internals from the firmware
or software stack. Such access includes writing control signals, reading status signals,
bi-directional data streaming, procedure triggering, interrupt signaling, etc. Figure 1.1
presents an example of a simplified structure of some SoC. Master modules are red, slave
modules are yellow, and bus fabric components are blue.

Figure 1.1: Example internal structure of some SoC design with bus.

A bus usually consists of an address bus, a data bus, and a control bus. The most popular
on-chip buses used in FPGA designs are probably AXI [4] (which is part of the AMBA)
and Wishbone [5].
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If there is a bus in a design, then the bus needs to be managed. The bus management
consists of the following logical elements:

1. Address space management. This includes:

a) Assigning address ranges to the modules.

b) Aligning address ranges according to the user’s policy.

2. Bus fabric management. This includes:

a) Description of the modules hierarchy.

b) Generation of the bus fabric components (such as crossbars) according to the
user-provided description.

3. Registers management. This includes:

a) Ordering registers within the modules.

b) Splitting long signals between multiple registers.

c) Grouping short signals into a single register.

d) Attributing additional functions to the registers, such as associated strobe or
acknowledgment signals.

All bus and register management tasks can be done manually, semi-automated, or fully
automated. The greater the automation, the less room for potential engineers’ mistakes
and the greater the pace of the project development.

Managing the bus in a complex system is a well-known and non-trivial problem, especially
in hardware-software co-design projects [6, 7, 8, 9, 10, 11]. Even though various approaches
and implementations have already been proposed, there is still no solution that would
make the bus management process fully automated. All available tools and standards
either only support some of the logical elements of bus management or require users to do
the register management manually. The register management is the bus management’s
most time-consuming and error-prone part. What is more, when the register logic is
not fully automatically generated, there is a need to verify the behavior of the registers.
This is usually done in simulation by directed or randomized testbenches. However, [12]
presents the benefits of doing register verification using formal methods, and [13] shows
an example implementation of this idea.
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1.1 Example problem
The following section introduces an example to ease the reasoning. The example also
presents the typical register-centric approach for managing registers and the new
functionality-centric approach proposed in the thesis. It presents some, but not all, prob-
lems encountered in a register-centric approach that are eliminated in the newly proposed
approach.

Let us assume there is a module implemented in the FPGA logic called the Supervisor.
The Supervisor is capable of scheduling work to be done by some Worker modules. The
Supervisor has a 48-bit internal counter that can be reset. The Supervisor can pass
data to Worker modules at programmed counter value. There are 24 workers, and the
data passed to them is two 12-bit long vectors. The data might be passed to any set
of workers. For simplicity, let us assume that the data passed to all the workers is the
same. The Supervisor also has two additional status bits, informing whether it is currently
programmed (the data is scheduled to be processed) and whether it has been programmed
in the past. Programming in the past means that the Supervisor will not fire data passing
to the Workers before counter overflow. The Supervisor can also be unprogrammed.
Listing 1 shows the VHDL interface of the example Supervisor. Signals connected to the
particular ports have analogous names without the _i and _o suffixes.

Inside an FPGA, is a 32-bit wide bus (this is the width of the data; the width of the
address is irrelevant in this consideration). What bus it is and how it can be accessed
from the software is irrelevant to the analysis. A proper interface for accessing the bus is
provided via the registers_handle parameter.

The example Supervisor must be controlled by the software running on a CPU. Listing 2
shows an example Python interface of the Supervisor.
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entity Supervisor is
generic (WORKER_COUNT : positive := 24);
port (

clk_i : in std_logic;
-- Supervisor control interface
counter_o : out std_logic_vector(47 downto 0);
reset_counter_i : in std_logic;
-- Program procedure
program_i : in std_logic;
programmed_counter_value_i : in std_logic_vector(47 downto 0);
worker_data0_i : in std_logic_vector(11 downto 0);
worker_data1_i : in std_logic_vector(11 downto 0);
-- Workers mask is set independently
workers_mask_i : in std_logic_vector(WORKER_COUNT-1 downto 0);
-- Unprogram procedure
unprogram_i : in std_logic;
-- Status bits
programmed_o : out std_logic;
programmed_in_past_o : out std_logic;
workers_ready_o : out std_logic_vector(WORKER_COUNT-1 downto 0);
-- Interface to Workers
workers_ready_i : in std_logic_vector(WORKER_COUNT-1 downto 0);
data_valid_o : out std_logic_vector(WORKER_COUNT-1 downto 0);
worker_data0_o : out std_logic_vector(11 downto 0);
worker_data1_o : out std_logic_vector(11 downto 0)

);
end entity;

Listing 1: Example Supervisor VHDL entity interface.

class Supervisor():
def __init__(self, registers_handle):

pass
def read_counter(self):

pass
def reset_counter(self):

pass
def read_status_bits(self):

pass
def program(self, counter_value, worker_data0, worker_data1):

pass
def unprogram(self):

pass
def read_workers_ready(self):

pass
def set_workers(self, workers):

pass

Listing 2: Example Supervisor Python software interface.
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1.2 Register-centric approach
In the register-centric approach, one has to take the following mandatory steps:

a) Identify control signals. In the case of the Supervisor, these are: reset_counter,
program, unprogram, programmed_counter_value, worker_data0,

worker_data1, workers_mask.

b) Identify status signals. In the case of the Supervisor, these are: counter,
programmed, programmed_in_past, workers_ready.

c) Identify which control signals form a broader context. For instance, worker_data0
does not make sense when used alone. It is solely one of the procedure’s parameters
allowing for passing data to the workers. On the other hand, unprogram makes
sense on its own.

d) Identify which status signals form a broader context. There is no such case in the
example Supervisor.

e) Calculate the number of bits required for control and status signals. The example
Supervisor needs 82 status bits (counter, programmed, programmed_in_past,
workers_ready) and 96 control bits (programmed_counter_value, worker_data0
, worker_data1, workers_mask). Whether reset_counter, program,
unprogram should be included is yet another question. As these are single-bit signals
solely triggering some action, they can be implemented as registers or fields requir-
ing explicit set and clear or as register-associated signals triggered during register
write. The second option is usually better as it provides lower latency. However, if
the first option is chosen, then there are 99 control bits.

f) Identify control and status signals requiring special handling. For example, in the
case of the Supervisor, there is 48-bit long counter value. As the bus width is 32
bits, one needs to provide some mechanism for an atomic read of the counter value
to keep the value integrity while reading the counter.

g) Manually decide the register layout. This step involves answering a lot of irrelevant
questions. For example, how many registers are needed? Should lower bits of the
counter value be placed in the first or the second status register? Should reading
the first or the second register of the counter value trigger the atomic read? Should
programmed and programmed_in_past be placed in separate registers or in one
of the counter value registers to save some address space size? What should be
the order of control signals within the control registers? The number of possible
implementations is infinite.
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It is quite a lot of work, even for such a simple module. Moreover, the whole register
structure must also be reflected in the software. Figure 1.2 shows a conceptual model of
layers in the register-centric approach.

Figure 1.2: Conceptual stack of layers in the register-centric approach.

The communication interface and interconnect layers are irrelevant regarding the address
space and register management. Register-centric solutions focus on the module registers
and bus fabric layers. They allow describing one or more of these layers and can auto-
generate appropriate gateware, firmware, and software. However, these solutions ignore
the fact that some signals might need special handling or be a part of some broader
context. For instance, a user has to implement atomic reads or writes himself. The
same applies to the software responsible for triggering procedures implemented in the
gateware, consisting of multiple control registers. Such an approach is error-prone and
leads to duplication of information. For example, the information that some signal needs
atomic read is manually implemented in two places: in the firmware source code and the
software source code.

Working manually on the register layout is also susceptible to changes. In the example
Supervisor module, there are 96 bits needed for the control signals if reset_counter,
program, and unprogram are implemented as strobe signals associated with given con-
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trol registers. This is exactly three registers on a 32-bit wide bus. However, should
reset_counter, program, unprogram be associated with registers storing some data, or
maybe with virtual registers (registers with addresses but not storing any data)? What
happens if more workers have to be added? The user has to manually add more con-
trol registers and adjust the firmware and software accordingly. Yet another question
arises. Should the whole, longer workers_mask be moved to the new third control regis-
ter, or maybe just the new extra bits? Listing 3 shows an example implementation of the
software handling Supervisor module in the case of a register-centric approach.

class Supervisor:
def __init__(self, registers_handle):

self.registers_handle = registers_handle

def read_counter(self):
""" To keep counter integrity and perform atomic read, the

counter register 0 must be read as the first one. """
counter = self.registers_handle.Counter0.read()
counter |= self.registers_handle.Counter1.read() << 32
return counter

def reset_counter(self):
self.registers_handle.Reset_Counter.write(0)

def read_status_bits(self):
""" Returns tuple (programmed, programmed_in_past). """
status = self.registers_handle.Status.read()
return status & 1, status & 2

def program(self, counter_value, worker_data0, worker_data1):
""" Program0 register has to be written as the last one, as it has

strobe signal associated with it, which serves as the arm signal. """
self.registers_handle.Program2.write((worker_data1 << 12) | worker_data0)
self.registers_handle.Program1.write(counter_value >> 32)
self.registers_handle.Program0.write(counter_value & 0xFFFFFFFF)

def unprogram(self):
self.registers_handle.Unprogram.write(0)

def read_workers_ready(self):
return self.registers_handle.Workers_Ready.read()

def set_workers(self, workers):
""" Enable given workers. Workers argument can be a worker number

or a list of workers numbers. """
if type(workers) == int:

workers = [workers]
mask = 0
for w in workers:

mask |= 1 << w
self.registers_handle.Workers_Mask.write(mask)

Listing 3: Example Supervisor software interface implementation for register-centric ap-
proach.
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It all has to be coded manually. What is worse is that in case of any register changes, it
also has to be adjusted manually. This is because available solutions are register-centric.
They treat registers as a goal, not as a path to an actual goal, which is always the
functionality of the data.

The register-centric approach gives much freedom and is highly flexible. On the other
hand, it does not look at the registers from the broader context and is unaware of the
semantics of the stored data. This implies micro-management of registers, generates a lot
of irrelevant questions, and is relatively susceptible to changes.

Listing 5 presents an example SystemRDL description for the example Supervisor. Sys-
temRDL is the only formally defined register-centric format. If there were a need to
increase the number of workers above the data bus width, then the description would
need a relatively lot of adjustments. The register layout is described manually, so the
WORKER_COUNT macro can no longer be used. Listing 4 presents the file difference that
would have to be applied in such a case.

5,6d4
< `define WORKER_COUNT 24
<
19,20c17,21
< field {fieldwidth = `WORKER_COUNT; sw = w; hw = r;} mask;
< } Workers_Mask;
---
> field {sw = w; hw = r;} mask;
> } Workers_Mask0;
> reg {
> field {fieldwidth = 1; sw = w; hw = r;} mask;
> } Workers_Mask1;
37,38c38,42
< field {fieldwidth = `WORKER_COUNT; sw = r; hw = w;} mask;
< } Workers_Ready;
---
> field {sw = r; hw = w;} mask;
> } Workers_Ready0;
> reg {
> field {fieldwidth = 1; sw = r; hw = w;} mask;
> } Workers_Ready1;

Listing 4: Example Supervisor SystemRDL description change for worker count increase
above the data bus width.
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addrmap Supervisor {
name = "Supervisor";
default regwidth = 32;

`define WORKER_COUNT 24

reg empty_strobe_reg_t {
field {sw = w; hw = na; swacc;} dummy;

};

// Counter0 has to be read as the first one to
// keep counter value integrity.
reg { field { sw = r; hw = w; } data; } Counter0;
reg {

regwidth = 16;
field {sw = r; hw = w;} data[16];

} Counter1;
empty_strobe_reg_t Reset_Counter;

reg {
field {fieldwidth = `WORKER_COUNT; sw = w; hw = r;} mask;

} Workers_Mask;
// Program0 must be written as the last one,
// as the write triggers Program procedure.
reg {

field {sw = w; hw = r; swacc;} counter_value0;
} Program0;
reg {

regwidth = 16;
field {sw = w; hw = r;} counter_value1[16];

} Program1;
reg {

field {sw = w; hw = r;} worker_data0[12];
field {sw = w; hw = r;} worker_data1[12];

} Program2;
empty_strobe_reg_t Unprogram;

reg {
field {fieldwidth = `WORKER_COUNT; sw = r; hw = w;} mask;

} Workers_Ready;
reg {

field {fieldwidth = 1; sw = r; hw = w;} programmed;
field {fieldwidth = 1; sw = r; hw = w;} programmed_in_past;

} Status;
};

Listing 5: Example Supervisor SystemRDL description.

22



1.3 Functionality-centric approach
The thesis proposes a paradigm shift leading to a different approach. It looks at the
design and modules from the functionality point of view. It is the functionality of the
data that is in the center. An engineer always thinks about the functionality a given
module should serve. The whole register layout is automatically generated based on the
declarative description of the provided functionalities.

Figure 1.3 shows a conceptual model of layers in the functionality-centric approach. There
is an extra data functionality layer compared to the register-centric approach. This is the
core layer in this model. The module register layers are automatically generated based
on the data functionality layer.

Figure 1.3: Conceptual stack of layers in the functionality-centric approach.
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Looking at data from the functionality point of view allows for avoiding register micro-
management. Having functionality embedded into the register data notation also helps
to prevent information duplication. For example, atomic accesses or procedure calls can
be easily automatically generated for both the requester and the provider. This removes
a whole surface of potential human mistakes.

Listing 6 presents FBDL description for the example Supervisor, and appendix A presents
registerification results. If there were a need to change the number of workers, then it
would be enough to change the WORKER_COUNT constant value, even if the new number was
greater than the bus width. Listing 7 presents the file difference that would have to be
applied in such a case. As the compiler carries out the registerification process, the whole
register layout is automatically adjusted. There is no need to manually adapt gateware,
firmware, or software code. As FBDL promotes safety by default, there is also no need to
explicitly declare Counter status to be atomic. Any data wider than the data bus width
has atomic access unless explicitly waived by the user.

Main bus
Supervisor block

const WORKER_COUNT = 24

Counter status; width = 48
Reset_Counter proc

Workers_Mask mask; width = WORKER_COUNT
Program proc

counter_value param; width = 48
worker_data [2]param; width = 12

Unprogram proc

Workers_Ready status; width = WORKER_COUNT
type status_t status; width = 1; groups = "status"
programmed status_t
programmed_in_past status_t

Listing 6: Example Supervisor FBDL description.

3c3
< const WORKER_COUNT = 24
---
> const WORKER_COUNT = 33

Listing 7: Example Supervisor FBDL description change for worker count increase above
the bus width.
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2 On-chip interconnect architectures
Probably every practical computing system ever created consists of independent compo-
nents (there is at least some processing unit and a memory). In order to achieve synergy
and serve desired functionality, these components must communicate with each other
using a set of organized rules (communication protocols or standards). This network of
connections is often referred to as system interconnect. The very first interconnect ar-
chitectures were also called buses. The term “bus” originates from the computer, whose
history can be traced back to 1946 [14]. This term is still in common use, although
nowadays, bus protocols differ significantly from their ancestors. A bus, in general, is
a common pathway through which information flows from one computer component to
another. In the early days, computer components were relatively big, and all buses were
physically made of copper wires, or later as traces on the printed circuit boards. Initially,
those buses served four functions:

1. Data sharing - the primary purpose of every bus. Data processing is the core
concept of every computing system. It would not be achievable without data transfer
between system components.

2. Addressing - a bus had address lines. This allowed data to be sent to a particular
system component to a specific memory location.

3. Clock distribution - a bus provided a system clock signal to synchronize the periph-
erals attached to it or even to clock the peripheral itself.

4. Power supplying - a bus supplied power to various peripherals connected to it.

The most popular computer expansion buses include ISA [15], EISA [16], MCA [17],
VESA [18], SCSI [19], USB [20], and PCI/PCIe [21]. Most of them are not used anymore
as they have been replaced with the USB and PCIe. With the advancement of technol-
ogy, especially integrated circuits technology, it was possible to shrink components of
computing systems to the sizes, allowing the placement of multiple of them (or even the
whole system) on a single chip. There was still a need to connect system components
to enable communication between them. However, traditional microcomputer buses were
fundamentally handicapped for use as a SoC interconnection. This is because they were
designed to drive long signal traces and connector systems, which are highly inductive
and capacitive. In this regard, SoC is much simpler and faster. Furthermore, the SoC
solutions have a rich set of interconnection resources. These do not exist in microcom-
puter buses because they are limited by chip packaging and mechanical connectors. As
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the existing buses were not optimal for implementation on chips, the interconnect archi-
tectures started to be grouped into two classes: the off-chip interconnect architectures
and the on-chip interconnect architectures. The on-chip buses serve the same functions
as the off-chip buses except the last one, the power supply [22]. In the case of SoCs, the
power is usually supplied separately via the chip backbone. The clock is also not always
distributed, as a bus can be asynchronous [23], but this might also be valid in the case of
off-chip buses. Examples of prevailing on-chip buses include ARM AMBA AXI [4], IBM
CoreConnect [24], Intel Avalon [25], STMicroelectronics STBus [26], Opencores Wishbone
[5], MARBLE (asynchronous) [27].

The following sections briefly describe two on-chip bus standards, the AXI and the Wish-
bone. They have been chosen because:

1. they are omnipresent and popular,

2. they have different control logic.

The descriptions are brief because the Wishbone revision B4 specification has 128 pages
and, the AMBA AXI specification is 273 pages long. The subsections’ purpose is solely
to introduce example bus logic.

2.1 AMBA AXI
The AMBA AXI protocol is copyrighted by the Arm company. Its first version was
released in 2003, and its latest version, 5, was released in March 2023. In 2021, the spec-
ification changed primary terminology. The Master term was replaced with the Manager
term, and the Slave term was replaced with the Subordinate term. It is worth mentioning
because almost all available materials, except the specification and available IP cores,
still use the old terminology. AXI gained much popularity probably because it became
de facto the standard for connecting IP cores in FPGA designs utilizing AMD Xilinx or
Intel chips. Both companies are the major programmable logic devices market vendors,
and both offer AXI interconnect cores and functional IP cores with AXI interfaces.

The AXI protocol defines five independent channels:

1. write request (AW),

2. write data (W),

3. write response (B),

4. read reqeust (AR),

5. read data (R).
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Request channels carry control information that describes the nature of the data to be
transferred. Having independent channels for write and read means that the master can
simultaneously write and read the same slave. Write throughput is not limited by read
transactions, and read throughput is not limited by write transactions. This is not true,
for example, for the Wishbone bus.

The specification does not impose possible system interconnect topologies and only men-
tions the most popular ones:

1. shared request and data channels,

2. shared request channel and multiple data channels,

3. multilayer, with multiple request and data channels.

Figure 2.1 presents the AXI channel architecture of writes. A single transaction might
contain multiple transfers. Write transaction completion is signaled only for a complete
transaction, not for each data transfer in a transaction.

Figure 2.1: AXI channel architecture of writes [4].

Figure 2.2 shows the timing diagram for AXI single read transaction with single data
transfer and a bare minimum number of interface signals. It is the simplest possible
transaction with the minimum number of channels involved. The manager drives address
and valid signals in the read request channel and the ready signal in the read channel.
The subordinate drives the ready signal in the read request channel and data and valid
signals in the read channel. The side driving the ready signal can assert or deassert it
anytime, even before valid signal assertion. This means handshaking in AXI can take as
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Figure 2.2: AXI single read transaction with single data transfer.

little as one clock cycle. A transfer occurs only when both the valid and ready signals are
high. The side driving the valid signal must wait for ready assertion after it asserts the
valid signal. A deadlock happens if the side driving the valid signal waits for the ready
signal assertion before the valid signal assertion and the side driving the ready signal waits
for the valid signal assertion before the ready assertion. To prevent such scenarios, the
specification states that the valid signal source is not permitted to wait until the ready
signal is asserted before asserting the valid signal. The specification forbids combinatorial
paths between input and output signals on the manager and subordinate sides.

The AMBA AXI specification also defines the AXI-Lite version of the protocol. The
AXI-Lite is a subset of AXI where all transactions have one data transfer. It is intended
for communication with register-based components and simple memories when bursts of
data transfer are not advantageous.

There is also an AMBA AXI-Stream protocol defined in a separate specification [28].
AXI-Stream is a point-to-point protocol connecting a single Transmitter and a single
Receiver. The terms “Master/Manager” and “Slave/Subordinate” are not used in this
case, as the data always flows from the Transmitter to the Receiver. The specification
of AXI-Stream describes how data is transferred but does not describe the meaning of
the data. AXI-Stream is often used in data streaming applications, for example, video
processing. Although defined as a separate protocol, the AXI-Stream utilizes the same
valid-ready handshaking approach as the standard AXI protocol.
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2.2 Wishbone
Wishbone bus architecture was developed by Silicore Corporation. It was put into the
public domain in August 2002 by OpenCores (an organization promoting open IP cores
development). Wishbone versions till revision 4 were not copyrighted, and revision 4 is
copyrighted to the OpenCores. Wishbone can be freely copied and distributed.

Wishbone supports various core interconnection means, including:

1. point-to-point,

2. shared bus,

3. crossbar switch,

4. data flow,

5. off chip.

The possible interconnections are presented in Figure 2.3.

Figure 2.3: Possible Wishbone interconnections.

29



Wishbone supports single read/write transactions, with possible pipelining (introduced
in revision 4), block read/write transactions, and read-modify-write transactions. It also
supports registered feedback transactions, which allow for better throughput.

Figure 2.4 shows the timing diagram for a classic standard single read transaction with
the bare minimum number of interface signals. It is the simplest possible transaction.
However, it is enough to present how fundamentally different Wishbone control logic is
from the AXI control logic. The transaction starts when the cycle signal is asserted by
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Figure 2.4: Wishbone classic standard single read transaction.

the master on the second clock rising edge. The master also drives the address bus, write
enable and asserts the strobe signal to inform the slave that signals are valid and can be
read. The slave drives data on the third clock rising edge and asserts the acknowledgment
signal to inform the master that the data is valid. The slave may wait before asserting
the acknowledgment signal to throttle the transaction speed.

Compared to the AXI, the handshaking in Wishbone is related to the transaction as a
whole. There is no separate handshaking for requests, data, and write response.

2.3 Network on Chip
The network on chip is an on-chip interconnect architecture trying to overcome the limits
of the traditional bus architectures. The problem was observed and reported in the late
1990s, and was initially addressed in the early years of the 21st century [29, 30, 31, 32].
The most popular drawbacks of the traditional bus architectures that NoC tries to solve
include:
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1. Limited bandwidth shared by all attached units.

2. Decrease of the maximum frequency with the increase of the number of modules con-
nected to the bus. Every module adds parasitic capacitance, therefore the electrical
performance degrades with the increase of modules number.

3. IPs interface incompatibility. The 32-bit AXI Lite master will simply not work with
the 64-bit Wishbone slave in a traditional bus architecture without an extra bridge.
In the NoC approach, each network node can have an individual interface for local
register access.

4. Coupled transaction, transport, and physical activities. Changes to the bus physical
implementation can have profound ripple effects upon the implementation of the
higher-level bus behaviors. NoC distinguishes transaction, transport, and physical
layers that can be adjusted or improved independently.

However, NoC is mainly used in high bandwidth performance critical heterogeneous SoC
applications. Even homogeneous designs focused on accelerating the processing of giga-
bytes or terabytes of data (usually implemented using the HLS technique) do not use NoC
but rather different types of AXI interfaces depending on the nature and amount of data
being exchanged between modules [33]. This is because NoC is not free of drawbacks.
The most popular ones are:

1. Latency increase due to the internal network connections and routing algorithms.

2. Increased resource utilization compared to the traditional bus architectures.

3. Increased overall system complexity.

There are numerous different NoC topologies [34, 35, 36, 37, 38, 39]. The most popular
ones include ring, octagon, star, mesh, torus, folded torus, butterfly, binary tree, fat
tree, cube, crossed cube, hypercube, reduced hypercube, reduced mesh and cluster-based
hybrid, mesh connected ring, and cmesh.

Although the NoC architecture was inspired by well-known computer networks such as
LAN or WAN, it differs significantly from them. This is because the implementing the
protocols used in these networks, such as IP [40] or TCP [41], would consume a relatively
large amount of resources and require significant buffering capabilities. NoC packet typi-
cally consists of a header and payload data. The header must include at least the address
of the destination node, but it often also includes data length, data tags, and the address
of the source node. How the data is routed via the network depends on the routing al-
gorithm. Although the macro-level architecture of the NoC differs significantly from the
traditional bus architecture, the packet data still has to be somehow distributed inside
the module attached to the network via the network interface. There are two standard
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ways to achieve this. The first one is dataflow communication, and the second one is
address space communication. This is exactly what traditional buses were designed for.
So, in the end, the traditional bus architectures are still used within the NoC architec-
tures. However, their scope is limited to the single network nodes. Figure 2.5 presents an
example 12 nodes network on chip with the mesh topology.

Figure 2.5: Example 12 nodes mesh network on chip.

32



3 Prior art
This chapter presents the current state of the art. The term “tool” is used for all solutions,
although not all are strictly tools. Moreover, some are standalone entities, while others are
a part of more extensive frameworks. Each tool has been designed and implemented by
different teams. Although their main goal is the same, they sometimes accentuate diverse
areas. As a result, relative comparison is not always straightforward. This is why they
are rather matched against a generic template. Nonetheless, none of the available
solutions offers a functional view of data placed in the registers. They are
registers-centric. The order of analysis is alphabetical.

3.1 Existing tools
Register-centric approaches can be divided into two classes depending on the data they
produce. The first class, as the output data, produces information on register addresses,
masks, and bit shifts. The second class abstracts registers and bit fields as objects. The
user does not explicitly use addresses, masks, and bit shifts but calls methods for reading
and writing particular registers and bit fields. Instead of providing methods for reading
and writing, some solutions prefer operators overloading, for example [42]. The second
class is safer to use as it eliminates mistakes caused, for example, by applying bit shift of
bit field A for bit field B.

It is important to mention that all described tools and solutions are in continuous de-
velopment, so some of their features might have changed, or new features might have
been added since they were described. It is also worth mentioning that if tool T claims
support for feature F or language L, then it might not be full support, as all such tools
are implemented incrementally. It does not indicate the weakness of the tools but rather
shows a pragmatic approach to the problem. There would be no technical progress in the
described field if the tools were usable only when they were 100 % complete.
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3.1.1 airhdl
The airhdl [43] is a web-based AXI4 VHDL/SystemVerilog register generator tool. It also
has a command line version, requiring Java runtime version 8 or higher, accepting register
specification in JSON [44] format. It supports code generation for SystemVerilog, VHDL,
C/C++, HTML [45] or Markdown documentaiton or transformation to IP-XACT XML
[46] format. The tool is closed source, and any plan except the Free one is paid. The main
website has a demo video upon which it is clear that the tool follows the register-centric
approach. The user explicitly defines registers and bit fields. The generated C header file
contains macros defining addresses, offsets, and masks.

3.1.2 Address Generator for Wishbone
The AGWB [3, 47], the successor of addr_gen [48], facilitates the automated generation of
the control system’s HDL and software components based on the XML system description.
It supports code generation for VHDL, C, Python, Forth, XML register map, and HTML
for documentation.

Listing 8 presents an example AGWB register description in XML format. This snippet
is taken directly from the DAQ readout chain for the STS being prepared for the CBM
experiment at GSI Darmstadt.

<block name="hctsp_software_command_slot">
<creg name="control" stb="1" default="0x0">

<field name="chip_address" width="4"/>
<field name="downlink_mask" width="12"/>
<field name="group_mask" width="8"/>
<field name="sequence_number" width="4"/>

</creg>
<creg name="control_frame" reps="2" default="0x0">

<field name="request_type" width="2"/>
<field name="request_payload" width="15"/>
<field name="crc" width="15"/>

</creg>
</block>

Listing 8: Example AGWB description in XML format.

The hctsp_software_command_slot block has three control registers with an extra strobe
signal associated with the control register. What is not seen and can not be deduced from
the description is that all three control registers constitute a broader context. Namely,
they are all used to pass arguments to the procedure sending commands to the set of
front-end ASICs. Which front-end ASICs receive the command depends on the values of
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the chip_address, downlink_mask, and group_mask. None of the three control registers
makes sense without the remaining two registers. What is more, as the control control
register has an associated strobe signal (stb="1") it must be written as the last of the
three registers. However, as the approach is register-centric, the correct write access order
must be coded manually. It leaves room for the programmer’s mistakes.

Listing 9 shows the VHDL interface of the Software Command Slot entity. The
set_pending_i port is connected to the strobe signal of the control register. The
clear_pending_i port in the actual design is driven by the command consumer logic, but
for co-simulation purposes, it was connected to the testbench register with an associated
strobe signal. The definitions of t_command and t_command_request record types are
not shown. However, all fields belonging to these types are presented in figures 3.1 and
3.2.

entity Software_Command_Slot is
port (

clk_40_i : in std_logic;
set_pending_i : in std_logic;
clear_pending_i : in std_logic;

downlink_mask_i : in std_logic_vector(11 downto 0);
group_mask_i : in std_logic_vector(7 downto 0);
command_i : in t_command;

command_request_o : out t_command_request := C_EMPTY_COMMAND_REQUEST
);

end entity;

Listing 9: Software Command Slot VHDL entity interface.

Listing 10 shows the creation of write commands for Python co-simulation testbench. A
single write command consists of two control frames. The first control frame contains
the register address as the payload, and the second one contains data. The provided
sequence_number is the sequence number of the first control frame, the second control
frame within the command must have a sequence number increased by one compared to
the first control frame.
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write_commands = [
Command(

downlink_mask = 0x30,
group_mask = 0x8,
chip_address = 3,
sequence_number = 0,
request_types = (WRADDR, WRDATA),
register_address = 0x4A,
data = 0x31,

),
Command(

downlink_mask = 0x1D0,
group_mask = 0xAB,
chip_address = 0xF,
sequence_number = 0xD,
request_types = (WRADDR, WRDATA),
register_address = 0xFF9,
data = 0x75,

),
]

Listing 10: Snippet of Python code with write command objects creation for Software
Command Slot.

Listing 11 presents the Python method with an invalid order of register writes. As the
access order has to be implemented manually, it is relatively easy to write the control
register before the control_frame registers by mistake. If the control register is written
before control_frame registers, the system “almost works.”

def send(self, handle):
handle.control.writeb(

(self.sequence_number << 24 ) |
(self.group_mask << 16) |
(self.downlink_mask << 4) |
self.chip_address

)
for i in range(0,2):

handle.control_frame[i].writeb(
(self.crcs[i] << 17) |
(self.payloads[i] << 2) |
self.request_types[i]

)

Listing 11: Python method sending command to the Software Command Slot - invalid
write order.
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Figure 3.1 presents waveforms for signals connected to the Software Command Slot entity
ports in case of invalid write order. When the command request is marked as pending,
the typee, payload and crc attributes of both control frames are not yet valid (wave-
forms ). The behavior depends on when the command request consumer samples the
data. If sampling happens after the typee, payload, and crc are updated, the system
works correctly. However, if sampling happens before the update, then the system works
incorrectly. The first command results in a CRC error. However, later commands are sent
correctly with an extra one command delay unless the set of destination front-end ASICs
changes. In such cases, valid commands are sent to the invalid set of ASICs, and no error
is reported. Such bugs can be complex and time-consuming to debug, as there is implicit
state storage between commands in case of incorrect register write order. This kind of
mistake happened to the author during the development and made him think there must
be a better way to describe data stored in the registers.

Figure 3.1: Software Command Slot entity port signal waveforms - invalid write order.
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Listing 12 shows the Python method with a valid order of register writes, and figure 3.2
presents waveforms for signals connected to the Software Command Slot entity ports in
case of valid write order. All attributes of both control frames are already valid when the
command request pending signal is asserted. The result does not depend on the command
consumer sampling time.

def send(self, handle):
for i in range(0,2):

handle.control_frame[i].writeb(
(self.crcs[i] << 17) |
(self.payloads[i] << 2) |
self.request_types[i]

)
handle.control.writeb(

(self.sequence_number << 24 ) |
(self.group_mask << 16) |
(self.downlink_mask << 4) |
self.chip_address

)

Listing 12: Python method sending command to the Software Command Slot - valid write
order.

Figure 3.2: Software Command Slot entity port signal waveforms - valid write order.
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3.1.3 AutoFPGA
AutoFPGA [49] is an FPGA design automation routine. AutoFPGA aims to take a series
of bus component configuration files and compose a design consisting of the various bus
components linked together in logic, having an appropriate bus interconnect, and more.
AutoFPGA is much more than a register generation or bus management tool. It is more
like a uniform framework for implementing FPGA designs. However, it is considered prior
art in this dissertation because register and bus management aspects are significant.

AutoFPGA files used for design generation contain much more information than register
definitions. Listing 13 presents a snippet of the AutoFPGA documentation regarding the
register description. Listing 14 presents a snippet regarding register macros of atuomati-
cally generated regdefs.h file. This is a standard low-level register-centric approach. The
user is provided with macros defining register addresses and must manually implement
access methods.

REGDEFS.H.INCLUDE Placed at the top of the regdefs.h file
REGS.NOTE A comment to be placed at the beginning of the register

list for this peripheral
REGS.N The number of registers this peripheral has.

AutoFPGA will then look for keys of the form
REGS.0 through REGS.(REGS.N-1).

REGS.0...? Describes a register by name. The first value is the
offset within the address space of this device.
The second token is a string defining a C #def'd
constant. The third and subsequent tokens represent
human readable names that may be associated with
this register.

REGDEFS.H.DEFNS Placed with other definitions within regdefs.h
REGDEFS.H.INSERT Placed in regdefs.h following all of the

definitions
I may change this to the following notation , though:
REGSDEFS.NOTE
REGS.<name>.ADDR # Offset within the peripheral
REGS.<name>.UNAME(s) # User-readable name
REGS.<name>.DESC(ription for LaTeX)

Listing 13: AutoFPGA documentation on register definition.
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// Register address definitions, from @REGS.#d
#define R_BUSERR 0x00080000 // 00080000, wbregs names: BUSERR
#define R_FIXEDATA 0x00080004 // 00080004, wbregs names: FIXEDATA
#define R_PWRCOUNT 0x00080008 // 00080008, wbregs names: PWRCOUNT
#define R_RAWREG 0x0008000c // 0008000c, wbregs names: RAWREG
#define R_SIMHALT 0x00080010 // 00080010, wbregs names: SIMHALT
#define R_SPIO 0x00080014 // 00080014, wbregs names: SPIO
#define R_VERSION 0x00080018 // 00080018, wbregs names: VERSION
#define R_BKRAM 0x00100000 // 00100000, wbregs names: RAM

Listing 14: Snippet of regdefs.h file automatically generated by AutoFPGA.

3.1.4 Cheby
The Cheby [50, 51], the successor of the Cheburashka [52], aims to define a file format to
describe the hardware-software interface (the memory map) and a set of tools to generate
HDL, drivers, and documentation from the files. It uses YAML as a register description
file format.

Listing 15 presents an example Cheby register description in YAML format. The user
explicitly defines registers, providing their names, type, width, and access type. For
example, register inputs represent 32 inputs of a GPIO. As inputs can only be read, the
access type is defined as ro (read-only).

The Cheby generator is capable of generating a C++ library. The library provides a
hierarchical interface over every memory node defined in a memory map. The library
interface allows software developers to read or write to registers and their fields, having
all low-level bit-shifting and masking operations done by the wrapper. This is a higher
abstraction than addresses, masks, and shifts generation and implementing the access
manually. However, there is no way to inform Cheby that a particular set of registers
may form a broader context and that they must always be read or written as a whole in
the correct order. The Cheby is representative of a typical register-centric approach with
abstracted access to a single register or bit field.
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memory-map:
bus: wb-32-be
name: gpios
x-hdl:

busgroup: True
children:
- reg:

name: inputs
description: A register
type: unsigned
width: 32
access: ro

- reg:
name: outputs
type: unsigned
width: 32
access: rw

- submap:
name: gpios_axi4
size: 0x40
description: An AXI4-Lite bus
interface: axi4-lite-32

Listing 15: Example Cheby registers description in YAML format.

3.1.5 Corsair
The Corsair [53] is a tool for creating and maintaining control and status register maps for
HDL projects. The Corsair accepts JSON, YAML, and plain text tables as input formats.
It is capable of generating files for Verilog, VHDL, C, Python, and documentation written
in Markdown.

Listing 16 presents an example Corsair register description in YAML format. Listing 17
presents the generated C header file. This is a traditional, register-centric approach. An
engineer describes registers at the lowest level and gets information on addresses, masks,
and shifts (LSB in this case). Later, this information is used in the manual implementation
of the software accessing the data. Corsair also allows for code generation for Python. In
this case, proper addressing, masking, and shifting are automatically generated. However,
there is no way to define a broader context consisting of multiple registers.
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regmap:
- name: DATA

description: Data register
address: 4
bitfields:
- name: FIFO

description: Write to push value to TX FIFO, read to get data from RX FIFO
reset: 0
width: 8
lsb: 0
access: rw
hardware: q
enums: []

- name: FERR
description: Frame error flag. Read to clear.
reset: 0
width: 1
lsb: 16
access: rolh
hardware: i
enums: []

- name: STAT
description: Status register
address: 12
bitfields:
- name: BUSY

description: Transciever is busy
reset: 0
width: 1
lsb: 2
access: ro
hardware: ie
enums: []

- name: RXE
description: RX FIFO is empty
reset: 0
width: 1
lsb: 4
access: ro
hardware: i
enums: []

Listing 16: Example Corsair register description in YAML format.
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#ifndef __REGS_H
#define __REGS_H
#define __I volatile const // 'read only' permissions
#define __O volatile // 'write only' permissions
#define __IO volatile // 'read / write' permissions

#include "stdint.h"
#define CSR_BASE_ADDR 0x0

#define CSR_DATA_ADDR 0x4
#define CSR_DATA_RESET 0x0
typedef struct { uint32_t FIFO : 8; uint32_t :16; uint32_t FERR : 1; } csr_data_t;
#define CSR_DATA_FIFO_WIDTH 8
#define CSR_DATA_FIFO_LSB 0
#define CSR_DATA_FIFO_MASK 0x4
#define CSR_DATA_FIFO_RESET 0x0
#define CSR_DATA_FERR_WIDTH 1
#define CSR_DATA_FERR_LSB 16
#define CSR_DATA_FERR_MASK 0x4
#define CSR_DATA_FERR_RESET 0x0

#define CSR_STAT_ADDR 0xc
#define CSR_STAT_RESET 0x0
typedef struct

{ uint32_t :2; uint32_t BUSY : 1; uint32_t :4; uint32_t RXE : 1; } csr_stat_t;
#define CSR_STAT_BUSY_WIDTH 1
#define CSR_STAT_BUSY_LSB 2
#define CSR_STAT_BUSY_MASK 0xc
#define CSR_STAT_BUSY_RESET 0x0
#define CSR_STAT_RXE_WIDTH 1
#define CSR_STAT_RXE_LSB 4
#define CSR_STAT_RXE_MASK 0xc
#define CSR_STAT_RXE_RESET 0x0

typedef struct {
__IO uint32_t RESERVED0[1];
union { __IO uint32_t DATA; __IO csr_data_t DATA_bf; };
__IO uint32_t RESERVED1[1];
union { __I uint32_t STAT; __I csr_stat_t STAT_bf; };

} csr_t;

#define CSR ((csr_t*)(CSR_BASE_ADDR))
#endif /* __REGS_H */

Listing 17: Example C header file generated using Corsair (comments removed for
brevity).
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3.1.6 Tools provided by FPGA vendors
Development environments provided by FPGA vendors offer some capabilities for bus
and register management (for example, Block Designer - AMD Xilinx, Platform Designer
- Intel). They allow for connecting master, slave, and bus fabric components using GUI
tools. Figure 3.3 shows a simple system designed in Vivado Block Designer, containing
blocks interconnected via the local AXI bus.

Figure 3.3: A simple design created using Block Designer in Xilinx Vivado environment
[54].

Figure 3.4 shows the address table generated automatically by that tool. It is possible to
adjust component address spaces manually. In the case of ready-to-use IP cores included
in the development environments, the register description is included in the core config-
uration file (vendor-specific format). The tools can generate device tree descriptions and
access codes, for example, for Linux drivers. However, in the case of custom components,
only the address space is reserved. The user still needs a custom mechanism for register
management within the component.
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Figure 3.4: The address space allocation for the simple design from figure 3.3.

Unfortunately, managing designs using vendor EDA tools is challenging when the com-
plexity of the system grows, especially when the number of blocks or nested subblocks is
parameterized. Moreover, heavy reliance on GUI makes it incompatible with purely hdl-
based or script-driven development flow. Opening the GUI application to apply changes
is also relatively time-consuming compared to applying a change in a text file. A single
change in a GUI widget often leads to multiple changes in project files. This makes track-
ing changes in the design using a revision control system more complicated compared to
the traditional approach in which configuration is done using textual files. An alternative
approach is to use Tcl scripts for block design management [55]. While this approach
eliminates the GUI approach disadvantages, it requires more user expertise.

3.1.7 hdl_registers
The hdl_registers [56] project is an open-source HDL register generator. It is capable of
generating files for C, C++, HTML (documentation), VHDL, and Python. Hdl_registers
accepts register description in the TOML file format. It is also possible to work directly
with the Python API without providing a TOML file.

Listing 18 presents an example register description in the TOML format used by the
hdl_registers. The user explicitly defines registers and their mode, which is the access
type. For example, the configuration register is defined with mode equal r_w. This
implies that the register can be read and written. However, to store any data in the
register, the user must also define bit fields belonging to the register. In the example
description two bit fields are defined, configuration.bit.enable and configuration.
bit_vector.data_tag.

Listing 19 presents the generated C header file. This is a typical, register-centric approach.
Information on addresses, shifts, and masks is generated, and the user has to utilize it to
write the access code.
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[register.configuration]
mode = "r_w"
# This will allocate a bit field named "enable" in the "configuration" register.
[register.configuration.bit.enable]
default_value = "1"
# This will allocate a bit vector field named "data_tag" in the
# "configuration" register.
[register.configuration.bit_vector.data_tag]
width = 4
default_value = "0101"

[register.status]
mode = "r"
[register.status.bit.idle]
default_value = "1"
[register.status.bit.stalling]
description = "'1' if the module is currently being stalled."
[register.status.bit_vector.counter]
width = 8

Listing 18: Example hdl_registers description in TOML format.

Hdl_registers is also able to generate code with higher abstraction for C++ and Python.
Listing 20 presents the generated C++ header file. The higher abstraction is achieved by
generating getters and setters for registers and bit fields. There is no need to use address,
shift, and mask values directly. However, this approach is still register-centric, as getters
and setters are generated only for registers and all data fitting within a single register. If
a counter width were equal to two registers, the user would have to manually glue read
access by calling two getters. There is also no way to provide information on whether the
read must provide atomicity in such a case. In the case of atomicity, it must be manually
coded in HDL.

What is more, the generated interface is distinct for different targets (C vs C++). How-
ever, the nature of the data stored within the registers does not inherit from the language
used to implement the access but from the functionality it serves. If the generated C++
code allows directly reading bit fields suiting a single register, why does the generated C
code enforce the user to apply shifting and masking manually?
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#ifndef EXMPL_REGS_H
#define EXMPL_REGS_H

#define EXMPL_NUM_REGS (2u)

typedef struct example_base_addresses_t {
uint32_t read_address;
uint32_t write_address;

} example_base_addresses_t;
typedef struct example_regs_t {

uint32_t configuration;
uint32_t status;
example_base_addresses_t base_addresses[2];

} example_regs_t;

#define EXMPL_CONFIGURATION_INDEX (0u)
#define EXMPL_CONFIGURATION_ADDR (4u * EXMPL_CONFIGURATION_INDEX)

#define EXMPL_CONFIGURATION_ENABLE_SHIFT (0u)
#define EXMPL_CONFIGURATION_ENABLE_MASK (0b1u << 0u)
#define EXMPL_CONFIGURATION_ENABLE_MASK_INVERSE (~EXMPL_CONFIGURATION_ENABLE_MASK)

#define EXMPL_CONFIGURATION_DATA_TAG_SHIFT (1u)
#define EXMPL_CONFIGURATION_DATA_TAG_MASK (0b1111u << 1u)
#define EXMPL_CONFIGURATION_DATA_TAG_MASK_INVERSE (~EXMPL_CONFIGURATION_DATA_TAG_MASK)

#define EXMPL_STATUS_INDEX (1u)
#define EXMPL_STATUS_ADDR (4u * EXMPL_STATUS_INDEX)

#define EXMPL_STATUS_IDLE_SHIFT (0u)
#define EXMPL_STATUS_IDLE_MASK (0b1u << 0u)
#define EXMPL_STATUS_IDLE_MASK_INVERSE (~EXMPL_STATUS_IDLE_MASK)

#define EXMPL_STATUS_STALLING_SHIFT (1u)
#define EXMPL_STATUS_STALLING_MASK (0b1u << 1u)
#define EXMPL_STATUS_STALLING_MASK_INVERSE (~EXMPL_STATUS_STALLING_MASK)

#define EXMPL_STATUS_COUNTER_SHIFT (2u)
#define EXMPL_STATUS_COUNTER_MASK (0b11111111u << 2u)
#define EXMPL_STATUS_COUNTER_MASK_INVERSE (~EXMPL_STATUS_COUNTER_MASK)

#endif // EXMPL_REGS_H

Listing 19: Example C header file generated using hdl_registers (comments removed for
brevity).
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#pragma once
#include <cassert>
#include <cstdint>
#include <cstdlib>

namespace fpga_regs {

class IExample {
public:

static const size_t num_registers = 2uL;

// Length of the "base_addresses" register array
static const size_t base_addresses_array_length = 3uL;

virtual ~IExample() { }

virtual uint32_t get_configuration() const = 0;
virtual void set_configuration(uint32_t register_value) const = 0;

virtual uint32_t get_configuration_enable() const = 0;
virtual uint32_t get_configuration_enable_from_value(

uint32_t register_value) const = 0;
virtual void set_configuration_enable(uint32_t field_value) const = 0;
virtual uint32_t set_configuration_enable_from_value(

uint32_t register_value, uint32_t field_value) const = 0;
virtual uint32_t get_configuration_data_tag() const = 0;
virtual uint32_t get_configuration_data_tag_from_value(

uint32_t register_value) const = 0;
virtual void set_configuration_data_tag(uint32_t field_value) const = 0;
virtual uint32_t set_configuration_data_tag_from_value(

uint32_t register_value, uint32_t field_value) const = 0;

virtual uint32_t get_status() const = 0;
virtual uint32_t get_status_idle() const = 0;
virtual uint32_t get_status_idle_from_value(uint32_t register_value) const = 0;
virtual uint32_t get_status_stalling() const = 0;
virtual uint32_t get_status_stalling_from_value(uint32_t register_value) const = 0;
virtual uint32_t get_status_counter() const = 0;
virtual uint32_t get_status_counter_from_value(uint32_t register_value) const = 0;

};

} /* namespace fpga_regs */

Listing 20: Example C++ header file generated using hdl_registers (comments removed
for brevity).
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3.1.8 II & CII
The II (Internal Interface) [57] and CII (Component Internal Interface) are solutions
developed for electronic systems created for CMS and DESY [58]. Although it is closed-
source, its approach has been described in papers [59, 60]. The description in the papers
does not allow for the reconstruction of the tool’s internal logic. However, based on the
attached figures and description, it looks like the CII approach is register-centric with
abstracted away register width. A user is provided with the concept of records. A record
has a type and width that can be greater than the width of the single register. Whether
the access to the record is atomic is unclear based on the available information. The
user does not define the functionality of the data placed in the record but the access
rights.

3.1.9 IP-XACT
The IP-XACT [61] is neither a bus and register management tool nor a design framework.
It is more like an interchangeable IP documentation format. The focus of the standard
is to act as an electronic databook - its primary function is to “document what is there”
[62]. However, it is mentioned as prior art as there were at least two [63, 64] attempts to
implement the bus and register code generators from the IP-XACT register description.
IP-XACT uses XML file format for data representation. These XML files are usually
highly unreadable as they are intended for machines. To make any use of them, special
tools, such as Kactus2 [65], are needed. These are usually GUI programs with a friendly
user interface using IP-XACT XML file format as an input/output file format. A. Kamppi
et al. proposed to extend IP-XACT with software features so that more firmware or
software can be generated from the description [66].
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3.1.10 Opentitan Register Tool
Opentitan [67, 68] is an open-source silicon Root of Trust project. As such, it has a
subpart named the Register Tool [69] that can be used as a standalone tool. It uses
Hjson (a syntax extension to JSON) as an input file format for the register description.
It is capable of generating files for HTML documentation, standard JSON, Verilog, and
C.

Listing 21 presents an example Opentitan register description. The register is defined
explicitly. The user must provide a register name, software access type (swaccess), and
bit fields belonging to the register. The example description defines single register REGA
with two bit fields RXS and ENRXS. As the software access type is rw, both bit fields can
be read and written.

The Opentitan Register Tool can be used to generate C header files. The generated
C header file contains information on register addresses, bit field shifts, and masks and
may have information on enumerated names and values. This is a typical register-centric
approach. A developer must use the address, mask, and shift information to implement
firmware or software access code manually.
{

name: "REGA",
desc: "Description of register",
swaccess: "rw",
resval: "42",
fields: [

{ bits: "15:0", name: "RXS", desc: "Description of bit field" },
{ bits: "16", name: "ENRXS" }

]
}

Listing 21: Example Opentitan register description in Hjson format.

3.1.11 Register Wizard
The Register Wizard is a free tool from the Inventas (formerly Bitvis) company. It has
been abandoned, but the company sends it on request [70]. The presentation links are
also valid [71, 72]. It uses Model Description File format, which is actually a JSON
format. It is capable of generating files for VHDL, C header, and documentation written
in Office Open XML format. Listing 22 shows a register definition template from the
Register Wizard documentation on defining registers and bit fields. This is a typical
register-centric approach. The user describes particular registers, their addresses, access
properties, internal bit fields, etc. The generated C header file includes addresses, masks,
and bit-shift information.
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"registers": [{
"name": "",
"configuration": {},
"address": "",
"summary": [],
"description": [],
"width": ,
"access": "",
"signal": ""
"reset": "",
"location": "",
"coreSignalProperties": {},
"fields": [{

"name": "",
"position": "",
"description": [],
"access": "",
"signal": "",
"reset": "",
"location": "",
"coreSignalProperties": {}

}]
}]

Listing 22: Snippet from the Register Wizard documentation on defining registers and
bit fields.

3.1.12 RgGen
RgGen [73] automatically generates source code related to configuration and status regis-
ters. RgGen is capable of generating files for SystemVerilog, VHDL, UVM, C, and register
map documents written in Markdown.

What makes RgGen unique is the fact that register map specifications can be written
in multiple formats, such as Ruby language API, YAML, JSON, TOML, Spreadsheet
(XLSX, XLS, OSD, CSV), SiFive DUH (Design u Hardware) [74].

Listing 23 presents an example RgGen register description in YAML format. Listing
24 presents the generated C header file. This is a traditional, register-centric approach.
An engineer describes registers at the lowest level and, as a result, gets information on
addresses/offsets, masks, and widths. Later on, this information is used in the manual
implementation of software accessing the data.
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register_blocks:
- name: block_0

byte_size: 256
registers:
- name: register_0

bit_fields:
- {name: bit_field_0, bit_assignment: {width: 4}, type: rw , initial_value: 0}
- {name: bit_field_1, bit_assignment: {width: 2}, type: wrs , initial_value: 0}
- {name: bit_field_2, bit_assignment: {width: 2}, type: rowo, initial_value: 0}

- name: register_1
bit_fields:
- <<:
- { bit_assignment: { lsb: 0, width: 1 }, type: rw, initial_value: 0 }
- labels:

- { name: foo, value: 0, comment: 'FOO value' }
- { name: bar, value: 1, comment: 'BAR value' }

Listing 23: Example RgGen registers description in YAML format.

#ifndef BLOCK_0_H
#define BLOCK_0_H
#include "stdint.h"
#define BLOCK_0_REGISTER_0_BIT_FIELD_0_BIT_WIDTH 4
#define BLOCK_0_REGISTER_0_BIT_FIELD_0_BIT_MASK 0xf
#define BLOCK_0_REGISTER_0_BIT_FIELD_0_BIT_OFFSET 0
#define BLOCK_0_REGISTER_0_BIT_FIELD_1_BIT_WIDTH 2
#define BLOCK_0_REGISTER_0_BIT_FIELD_1_BIT_MASK 0x3
#define BLOCK_0_REGISTER_0_BIT_FIELD_1_BIT_OFFSET 4
#define BLOCK_0_REGISTER_0_BIT_FIELD_2_BIT_WIDTH 2
#define BLOCK_0_REGISTER_0_BIT_FIELD_2_BIT_MASK 0x3
#define BLOCK_0_REGISTER_0_BIT_FIELD_2_BIT_OFFSET 6
#define BLOCK_0_REGISTER_0_BYTE_WIDTH 4
#define BLOCK_0_REGISTER_0_BYTE_SIZE 4
#define BLOCK_0_REGISTER_0_BYTE_OFFSET 0x0
#define BLOCK_0_REGISTER_1_BIT_WIDTH 1
#define BLOCK_0_REGISTER_1_BIT_MASK 0x1
#define BLOCK_0_REGISTER_1_BIT_OFFSET 0
#define BLOCK_0_REGISTER_1_BYTE_WIDTH 4
#define BLOCK_0_REGISTER_1_BYTE_SIZE 4
#define BLOCK_0_REGISTER_1_BYTE_OFFSET 0x4
#endif

Listing 24: Example C header file generated using RgGen.
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3.1.13 SystemRDL
The SystemRDL [75] differs from all other available solutions as it is the only one with an
official specification. The SystemRDL is a language aimed at the detailed description of
the registers. Version 2.0 supports the parameterization of components and the structure
of the system. SystemRDL is by far the most advanced solution with the greatest number
of features but also the most complex. Whether all of these features should be a part of
the bus and register management tool is a separate topic. However, the fact that most
SystemRDL compilers do not implement all features makes the question at least partially
justified. There are some closed-source paid [76, 77, 78] and open-source free SystemRDL
compilers [79, 80, 81]. Listing 5 presents an example SystemRDL description.

The SystemRDL standard allows users to extend components with custom properties. The
user-defined properties allow to add additional meaning to the data. This mechanism is
quite flexible but also has some drawbacks. The first one is that user-defined properties
are compiler specific. The second one is description verbosity, as SystemRDL is quite
verbose even without extra custom properties. One reason for such a state might be that
each register in SystemRDL must have at least one field, and registers without fields are
not allowed.

3.1.14 vhdMMIO
VhdMMIO [82] is a tool to generate AXI4-Lite MMIO infrastructure based on YAML
specification files. A single register file describes registers for a single AXI4-Lite slave
and maps to a single VHDL entity. VhdMMIO is also capable of generating HTML for
documentation.

Listing 25 presents an example vhdMMIO register description in YAML format. The
description defines a single control register with five bit fields (vhdMMIO uses the term
field for the register and subfield for the field). In vhdMMIO, the user is required to
provide addresses explicitly.

VhdMMIO is distinct from all other register-centric tools. This is because vhdMMIO has
the concept of logical registers. Logical registers can be wider than data bus width and
vhdMMIO is capable of generating atomic access hardware description. Unfortunately,
atomic access is implemented in such a way that bus master must lock slave to access
logical register sequentially and completely.

53



VhdMMIO also has the concept of registers/fields behavior. This allows generating more
gateware description automatically. However, as the behavior is bound to the particular
field or register and not to the data, it is impossible to describe broader data contexts,
such as procedures or streams. This makes vhdMMIO still a register-centric approach
as the user thinks and acts in the following order: define register, then define data, then
define the behavior of the data. Meanwhile, in FBDL, the user thinks and acts in the
following order: define data, then define the functionality of the data. All work related
to the registers is then done automatically. The concept of a register is not even present
in the FBDL thought flow.

metadata:
mnemonic: SSP
name: lpc1313_ssp
doc: |

This is mostly copypasted from the user manual of the SSP controller of
the LPC1313 microcontroller (NXP UM10375) to serve as a real-world example
of a register file description.

features:
bus-width: 32
optimize: yes

interface:
flatten: yes

fields:
- address: 0x0000

register-name: CR0
register-brief: SSP Control Register 0.
register-doc: This register controls the basic operation of the SSP controller.
behavior: control
subfields:
- bitrange: 3..0

mnemonic: DSS
name: data_size_select

- bitrange: 5..4
mnemonic: FRF
name: frame_format

- bitrange: 6
mnemonic: CPOL
name: clock_polarity

- bitrange: 7
mnemonic: CPHA
name: clock_phase

- bitrange: 15..8
mnemonic: SCR
name: prescaler_b

Listing 25: Example vhdMMIO register description in YAML format.
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3.1.15 wbgen2
Wbgen2 [83] is one of the first open-source bus and register management tools. The slave
description is prepared in the custom format and may contain registers, fields, interrupts,
memory blocks, and FIFO. The wbgen2 is capable of generating the slave HDL code in
VHDL or Verilog and C headers for integration. Additionally, it may generate the docu-
mentation for the created slave in Latex, Texinfo, or HTML. Wbgen2 does not support
vectors of registers, blocks, or nested blocks. Listing 26 presents an example register de-
scription in the wbgen2-specific format. The generated C code contains information on
register and field addresses and masks.

peripheral {
name = "GPIO Port";
description = "A sample 32-bit general-purpose bidirectional I/O port.";
hdl_entity = "wb_slave_gpio_port";
prefix = "gpio";
reg {
name = "Pin direction register";
description = "A register defining the direction of the GPIO port pins.";
prefix = "ddr";
field {
name = "Pin directions";
description = "1 - OUTPUT, 0 - INPUT";
type = SLV;
size = 32;
access_bus = READ_WRITE;
access_dev = READ_ONLY;

};
};
reg {
name = "Pin input state register";
description = "A register containing the current state of input pins.";
prefix = "psr";
field {
name = "Pin input state";
description = "Each bit reflects the state of corresponding GPIO port pin.";
type = SLV;
size = 32;
access_bus = READ_ONLY;
access_dev = WRITE_ONLY;

};
};
reg {
name = "Port output register";
description = "Register containing the output pin state.";
prefix = "pdr";
field {
name = "Port output value";
description = "Writing '1' sets the corresponding GPIO pin to '1'";
size = 32;

};
};

};

Listing 26: Example wbgen2 register description in wbgen2 specific format.
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3.1.16 Others
Others also noticed the bus register management problem. For example, authors of [84]
propose a custom text format for register description. The format defines register fields in
one-to-one correspondence with those defined in the UVM register layer. Unfortunately,
the tool is not publicly available, and the description of the tool is very short (2 pages).
Authors of [85] propose to use Verilog attributes. The description of the approach is also
very modest (2 pages). Both mentioned approaches are register-centric.

3.2 Summary
Table 3.1 summarizes capabilities of analyzed tools. The comparison table also includes
FBDL just in case to satisfy the reader’s curiosity.

Comparing bus and register management tool features is a challenging task. First, none
of the register-centric tools, except SystemRDL, has formal specification. The implemen-
tation is the specification. What is more, most tools target only a limited set of hardware
descriptions or programming languages, and they are usually tailored to these languages.
Comparing features of FBDL with register-centric tools is also not straightforward, as
FBDL is functionality-centric and has a different paradigm. For example, some of the
tools allow data value range constraining. However, it works only for data fitting a sin-
gle register, whereas, in FBDL, it works for data of any width. Partial support means
that a given feature is available only to some extent. For example, tools utilizing YAML
[86] format support parametrization achieved using YAML syntax. However, they do
not provide any extra parametrization mechanism, and full design parametrization is not
possible solely with YAML inheritance.
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4 Dissertation

4.1 Thesis
It is possible to generate a hardware description of the bus register structure and software
data access methods based on the description of the functionality of the data that shall
be stored in the registers. Moreover, such an approach offers some advantages in certain
practical use cases compared to the classic approach in which register structure is described
explicitly.

4.2 Aim and scope
The main aim of the dissertation is to design a language that allows the description of
system bus registers by defining the functionality of the data. The work also includes the
implementation of the proof of the concept compiler with a discussion of some general
implementation details that any FBDL-compliant compiler will likely have to face and
an example presenting the advantages of the functionality-centric approach in certain
practical use cases.
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5 Functionality types
It is recommended to read the subsections of this chapter concurrently with

the corresponding subsections of the FBDL specification (first specification,
then dissertation) or to read the whole specification first. The specification is
more focused on answering the “how” questions. In contrast, the dissertation
focuses on answering the “why” questions and describing the benefits of the
newly proposed functionality-centric approach.

5.1 Blackbox
The blackbox functionality is used to incorporate blocks implemented manually or gener-
ated by external tools (for example, the register-centric ones). The blackbox functionality
has the following two rationales:

1. Entirely relying on the functionality-centric compiler’s grouping algorithm may have
disadvantages. Firstly, the compiler results might not always be optimal, for exam-
ple, due to algorithm shortcomings. Secondly, automatic data grouping is challeng-
ing because of multiple constraints (described in subsection 7.1.3), so the algorithm
might have bugs for some corner cases. There should be a way to bypass the auto-
matic data placement in the registers to mitigate potential downsides.

2. A potential transition of a project already utilizing the register-centric approach to
the FBDL would require extra work related to rewriting the register description to
the data description, which might be time-consuming. The blackbox functionality
allows for incorporating the hardware description generated by the register-centric
tool and using the functionality-centric approach only for the new data.

5.2 Block
The block functionality is mainly used to logically group or encapsulate functionalities.
The block concept is not unique to the FBDL approach as some of the register-centric
approaches already had the same concept (for example, AGWB or SystemRDL). However,
thanks to the type parametrization and type extending mechanism, it is easy to instantiate
blocks with slightly different functionality. This is a common scenario in the case of the
FPGAs with two SLRs [87]. The SLRs might have different numbers of available resources
and might be connected to different hardware IP blocks. Let us suppose there are two
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SLRs, SLR0 and SLR1. SLR0 is connected to the PCIe, and there is a high throughput
PCIe-AXI bridge in the SLR0. In case of any problems with the bridge, it might need to
be debugged. A side access channel is required for SLR0, hence it must have two master
ports. Moreover, it must have some extra configuration and status data compared to the
SLR1. Listing 27 presents how such requirements can be easily satisfied in FBDL using
type parametrization and type extending mechanisms.

type SLR(masters_count=1) block
masters = masters_count
const PERIPHERAL_COUNT 1024
C [PERIPHERAL_COUNT]config
S [PERIPHERAL_COUNT]status; width = 14
P proc

p1 param; width = 16
p2 param; width = 8
r return; width = 25

Main bus
# SLR0 has 2 masters and is extended with some extra
# config and status for high throughput PCIe-AXI bridge
# configuration and debugging via low throughput
# UART-AXI bridge.
SLR0 SLR(2)

PCIe_AXI_config config; width = 16
PCIe_AXI_status status; width = 48; atomic = false

SLR1 SLR

Listing 27: Example of type parametrization and type extending based on the block
functionality.

5.3 Bus
The bus functionality represents the bus structure. The bus named Main is the default
entry point for the description used for the code generation. A compiler is free to accept
an argument that allows the change of the root of the description from Main to any valid
identifier. However, care is advised when choosing a naming convention for functional-
ities. Usually, a language has its preferred naming conventions. Some languages have
multiple conventions (C/C++/VHDL). Some languages have only a single convention
(Go/Python), but they are not formal, so there might be multiple in practice. As FBDL
description might be (actually almost always is) compiled into multiple target languages,
it is impossible to suit all naming conventions for given targets. Instead, it should be guar-
anteed that the given functionality name from the given .fbd file has the same name in all
target source files. It implies that the two most popular naming conventions (camelCase,
snake_case) should be avoided for functionality instance names and constants accessi-
ble in target languages. Both camelCase and snake_case start with a lowercase letter.
It imposes restrictions on how the target code might be implemented. For example, in
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Go, data types, fields, or functions starting with lowercase letters are not exported. A
potential implementation would have to do one of the following:

1. Change the instance names so that the first letters are uppercase. The drawback is
that the same instance would have at least two different names across all targets.

2. Generate extra functions allowing access to functionalities. For example, a function
translating string into a proper field value. This would imply extra performance
overhead and more complex code.

The remaining naming conventions starting with uppercase letters are PascalCase and
Pascal_Snake_Case. However, as some languages (VHDL, for example) are case insen-
sitive and there is no way to enforce PascalCase, the Pascal_Snake_Case, and
SCREAMING_SNAKE_CASE are strongly recommended. Broken pascalcase is hard to read,
especially after several hours of sitting in front of the computer screen.

The FBDL bus description is bus-type agnostic. This implies that the actual bus type
depends on the compiler support or, more precisely, on the generators provided by the
compiler’s back-end. However, a single compiler might support multiple bus types. An-
other implication is the fact that a bus description might contain only generic, common
features such as:

1. number of masters (masters property),

2. bus reset type (reset property),

3. bus data width (width property),

4. the relative position of bus modules (blackbox and block functionalities).

Any bus-type specific parameter must be handled at the compiler level, for example,
as a command line argument. Such an approach avoids unnecessary complexity in the
language and compiler implementations. The language has fewer elements, and bus-type-
specific compilers do not have to deal with extra logic that does not make sense for this
particular bus type.

A bus description also does not contain information on the bus address width. The
minimal bus address width (AWmin) implies from the address space size obtained as a
registerification result. However, in the actual design, the bus address width always has
some maximum value (AWmax). The following three scenarios are possible:

1. (AWmax > AWmin) In such a case, the designer has two options. The first one is to
leave the upper bits of the address bus unconnected. The second one is to narrow
the address bus so that AWmax = AWmin.

2. (AWmax = AWmin) In such a case, no action is required.
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3. (AWmax < AWmin) In such a case, the designer has to increase the number of
address bus bits. However, increasing the address bus width is not always possible
or might require an unacceptable amount of time. An alternative approach is to
limit the amount of data so that AWmax = AWmin.

The bus functionality has no property allowing to set the base address. However, FBDL-
compliant compilers are allowed to accept the bus base address as a command line argu-
ment.

5.4 Config
The config functionality is almost like a control register from the typical register-centric
approach. Almost, because the config functionality abstracts away the limited width of
the register.

Listing 28 shows an example description with a single config with a width equal to the
register width in the RgGen. As RgGen does not support registers without bit fields,
there is a need to type the C name twice. Most register-centric tools support registers
without bit fields. Listing 29 shows an example description with a single config with a
width equal to the register width in the FBDL. Listings 30 and 31 present example code
writing the config. In the case of config width not greater than the register width, the
code is the same for the register-centric approach and FBDL.
- register_block:

- name: Main
- registers:
- name: C

bit_fields:
- { name: C, bit_assignment: { width: 32 }, type: rw }

Listing 28: Example config instantiation with width equal to the register width in the
RgGen.

Main bus
C config

Listing 29: Example config instantiation with width equal to the register width in the
FBDL.

def do_something():
value = prepare_value()
Main.C.write(value)

Listing 30: Example config write utilizing the code generated by the register-centric ap-
proach compiler.
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def do_something():
value = prepare_value()
Main.C.write(value)

Listing 31: Example config write utilizing the code generated by the FBDL compiler.

Listing 32 shows an example description with a single config with a width greater than the
register width in the RgGen. Listing 33 shows an example description with a single config
with a width greater than the register width in the FBDL. In this case, there is no need to
adjust the code writing the config for FBDL. As any FBDL compiler is obliged to generate
functionality write and read access code, the code from listing 31 is still valid. However,
the register-centric approach code needs adjustments as an extra register has been added.
Listing 34 presents adjusted code. It takes extra time to write the code, and there is
room for possible mistakes. Firstly, the masks and shifts must be manually applied to the
value. Even if the masks and shifts are generated as constants/variables, there is still a
possibility of typing an incorrect name. Secondly, if the config needs atomic access, then
the registers must be read/written in the correct order. Thirdly, the atomicity must be
manually coded on the HDL side. None of these is an issue in the FBDL, as everything
is handled automatically by the compiler. This results from looking at the config as a
functionality, not a control register (the user cares about it as a whole, not as fragmented
pieces).

- register_block:
- name: Main
- registers:
- name: C1

bit_fields:
- { name: C1, bit_assignment: { width: 32 }, type: rw }

- name: C2
bit_fields:
- { name: C2, bit_assignment: { width: 1 }, type: rw }

Listing 32: Example config instantiation with width greater than the register width in
the RgGen.

Main bus
C config; width = 33

Listing 33: Example config instantiation with width greater than the register width in
the FBDL.
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def write_C(value):
Main.C1.write(value & 0xFFFFFFFF)
Main.C2.write((value >> 32) & 0x1)

def do_something():
value = prepare_value()
write_C(value)

Listing 34: Example config write utilizing the code generated by the register-centric ap-
proach compiler - config wider than register (33 bits).

5.5 Irq
The irq functionality represents an interrupt handling. Whether interrupts should be
considered as a part of a bus is a debatable topic. It has been decided that FBDL shall
provide support for interrupts because of the following reasons:

1. Interrupts, in most cases, have associated registers informing about the interrupt
source.

2. Interrupts, in most cases, have associated enable/mask registers allowing switching
on or off particular interrupts.

3. Interrupt lines are frequently routed together with bus lines.

Although FBDL supports interrupts, the support is limited solely to interrupt handling.
For example, there is no support for interrupts hierarchy (this feature is present, for
instance, in SystemRDL). This is because the interrupts hierarchy is not related to the
bus in any way, and it can be easily created on the provider side by properly connecting
interrupt components. There is also no way to configure whether the high or low level
or a rising or falling edge triggers an interrupt. As FBDL assumes positive logic, the
high level is assumed for level-triggered interrupts, and the rising edge is assumed for
edge-triggered interrupts. Low-level interrupts or falling edge interrupts can be easily
handled by negating the signal at the provider side. Adding the distinction into the
FBDL would unnecessarily complicate the language and create a second way to solve the
same problem.

5.6 Mask
The mask functionality is very similar to the config functionality. From the provider’s
perspective, there is no difference between the mask and the config. However, there is a
difference in the interface generated for the requester. The mask is bit-oriented, whereas
the config is value-oriented.
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The mask has all the same advantages over the register-centric approach as the config has.
There is also no need to add the mask prefix or suffix to the name to indicate to the user
that particular data is a mask, as the type already indicates it. Additionally, it also has
automatically generated means for bitwise operations. The interface must include ways
for:

1. Setting (writing 1) particular bits while simultaneously clearing remaining bits.

2. Clearing (writing 0) particular bits while simultaneously setting remaining bits.

3. Setting (writing 1) particular bits without changing the state of remaining bits.

4. Clearing (writing 0) particular bits without changing the state of remaining bits.

5. Toggling particular bits without changing the state of remaining bits.

Appendix D (class MaskSingleOneReg) presents a code that can be automatically bound
to the data solely based on the distinct type for mask.

5.7 Memory
The memory functionality is used to directly connect and map an external memory to the
generated bus address space. The memory does not have any valid inner functionalities.
In SystemRDL, for example, within memory, it is possible to have virtual child instances
representing a software view of the memory data. The FBDL takes a different approach
in this case. As memory can be seen as a continuous area of storage elements, one can
describe the layout of the data within the memory using a separate FBDL description
file or even using one of the register-centric tools if it makes more sense in a particular
case. An access interface used to access the data in the memory can then use the memory
access methods generated for the primary FBDL description (the one having the memory
functionality). The idea is presented in figure 5.1. Such an approach keeps the language
smaller, more concise, and orthogonal.

Figure 5.1: A possible access path to the external memory with separate FBDL descrip-
tion.
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Memory can also be connected to the bus using the proc or stream functionality (tech-
nically, it is also possible using solely configs, but this method is verbose, vague, and
impractical, so it has been omitted). Each of the five approaches (memory, two proc ap-
proaches, two stream approaches) has advantages and disadvantages. Global advantage
(+), global disadvantage (-), proc relative characteristic (•), stream relative characteristic
(*).

Memory:

+ The best potential throughput equal to the bus throughput.

+ No need for wrapper logic.

- To achieve the maximum throughput for block transactions, both the bus and the
access interface must support true block transactions.

- Generated address space size increased by the memory address space size.

One proc:

+ Minimal generated address space size increase.

- The worst throughput limited by the requester-provider round-trip latency for each
item access.

• The write access is additionality limited by the mandatory read of return data.

Two procs:

+ Minimal generated address space size increase.

• Needs more bits than one proc approach, as the memory address is repeated in the
second proc.

- The worst throughput limited by the requester-provider round-trip latency for each
item access.

• The write access is not additionality limited by the mandatory read of return data,
as it is in the case of one proc approach.

Stream - common memory address in separate config:

+ Minimal generated address space size increase.

+ The throughput for block read and write can potentially equal the bus throughput.

- Suboptimal single read and write accesses because of additional memory address
write to separate config.
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- Needs more complex implementation as both the bus and the access interface must
support true cyclic transactions to achieve maximum throughput.

- Needs wrapper logic if memory throughput is lower than the bus throughput for
cyclic transactions.

Stream - downstream with its own memory address param.

+ Minimal generated address space size increase.

* Needs more bits than one stream with a common memory address, as the memory
address must be placed for upstream in the config anyway.

+ The throughput for block read and write can potentially equal the bus throughput.

+ The throughput for random writes can potentially equal the bus throughput, as the
memory address is the downstream param.

- Suboptimal single read access because of additional memory address write to sepa-
rate config.

- Needs potentially the most complex implementation as both the bus and the access
interface must support true cyclic block transactions to achieve maximum through-
put.

- Needs wrapper logic if memory throughput is lower than the bus throughput for
cyclic transactions.

Particular advantages or disadvantages of given approaches may not be valid if access
to the memory is of read-only or write-only type. To make a satisfactory choice for a
particular design, a user must take into account at least the following factors: required
throughput, maximum overall address space size, type of memory access (read-write,
read-only, write-only), type of memory transactions (will there be more single or block
transactions), design simplicity. Listings 35, 36, 37, 38, and 39 present example descrip-
tions of five discussed external memory connections. The memory has a read-write access
type, its size equals 65536 words, and the word with equals 16 bits. Depending on the
requirements, it is also possible to mix some of the approaches. For example, if memory is
written in blocks and writes require high throughput, but it is read in single transactions,
then it is possible to use the stream for writes and proc for reads.
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Main bus
Mem memory

size = 2 ** 16
width = 16

Listing 35: FBDL external memory connection using memory functionality.

Main bus
Access_Mem proc

addr param; width = 16
data_in param; width = 16
read_write param; width = 1 # 0 - read, 1 - write
# The delay depends on the clock frequency
# and read latency.
delay = 1 us
data_out return; width = 16

Listing 36: FBDL external memory connection using one proc functionality.

Main bus
Read_Mem proc

addr param; width = 16
delay = 1 us
data return; width = 16

Write_Mem proc
addr param; width = 16
data param; width = 16

Listing 37: FBDL external memory connection using two proc functionalities.

Main bus
addr config; width = 16
Read_Mem stream

data return; width = 16
Write_Mem stream

data param; width = 16

Listing 38: FBDL external memory connection using two stream functionalities with
common address config.

Main bus
addr config; width = 16
Read_Mem stream

data return; width = 16
Write_Mem stream

addr param; width = 16
data param; width = 16

Listing 39: FBDL external memory connection using two stream functionalities with
separate address in downstream.
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5.8 Param
The param functionality is an inner functionality of the proc and stream functionalities.
The param functionality does not have the default property. This implies that proc or
stream parameters cannot have default values, which implies that functions or methods
generated for the requester also do not have default values for parameters. It has been
designed this way because not all programming languages support default values for func-
tion parameters (for example, C, Go, Rust). This could be worked around as the code
for the requester is automatically generated anyway. However, in the end, it has been
decided that adding support for the default value for the param functionality is not worth
because of the following reasons:

1. It would add extra complexity to the FBDL compilers.

2. Programming languages without the support for default values for function param-
eters are doing well. There are even negative opinions on default values for function
parameters. The argument behind these opinions is that they make code less read-
able and harder to analyze.

3. The user can always implement wrapper functions in the target language.

5.9 Proc
The proc functionality is a concept not present in the register-centric approaches. It
represents a procedure called by the requester and carried out by the provider. The proc
functionality is a good representative for presenting how the functional view of the data
can significantly reduce the amount of manual work and increase the code robustness [88].
It is called proc (from procedure), and not, for example, func (from function), to highlight
that this action has side effects and might take a non-negligible amount of time. In other
words, it is not pure.

Listing 8 presents an example taken directly from the data acquisition design for the CBM
experiment. Listing 12 presents Python code that had to be coded manually. Section
3.1.2 describes what is not optimal in the register-centric approach in this case. Listing
40 presents a description of the same block in FBDL format. Based on the description,
it is already clear that the inferred registers will be used for the procedure call.

69



type HCTSP_Software_Command_Slot block
Send proc

chip_addr param; width = 4
downlink_mask param; width = 12
group_mask param; width = 8
sequence_number param; width = 4

request_type [2]param; width = 2
request_payload [2]param; width = 15
crc [2]param; width = 15

Listing 40: HCTSP software command slot block description in FBDL format.

5.10 Return
The return functionality is an inner functionality of the proc and stream functionalities.
It represents data returned by a procedure or streamed by an upstream. Technically, it was
possible to add direction property to the param functionality, similar to the procedures
in the Ada language. However, param and return do not have the same properties.
Making them distinct also makes the language design less susceptible to potential future
enhancements as it helps to avoid inter-property dependencies.

5.11 Static
The static functionality represents data placed at the provider side that never changes.
The register-centric approach usually achieves this using a status register driven by a fixed
value. However, if it is impossible to mark the register as read-only for both sides, then
it is not clear that the data inside the register never changes without any extra comment
or code analysis. In FBDL, such constant data has its type.

The static functionality may be used, for example, for versioning, bus id, bus generation
timestamp, or storing secrets that shall be read only once. The typical difference between
an id and a version is worth analyzing. An id is usually data automatically added by
a compiler, calculated using some hash function with input description being the hash
function input. An id’s primary function is to be a description signature, upon which it is
clear whether two or more descriptions are identical. A version is usually data manually
added by an engineer to indicate what functionalities are supported by a given bus or
block.

70



The FBDL specification does not require FBDL compilers to add any bus or block id
automatically. However, at least bus id is extremely useful in practice. It can be used to
ensure that both requester and provider utilize the compilation results of the same bus
description. Register with such id must be placed at a fixed, known address, usually at
the beginning or the end of the generated address space.

5.12 Status
The status functionality is almost like a status register from the typical register-centric
approach. Almost, because the status functionality abstracts away the limited width of
the register. All advantages of the config functionality (section 5.4) are also valid for the
status functionality. The only difference between the config and the status functionalities
is that in the case of the config, the requester is the only writer, whereas in the case of
the status, the provider is the only writer.

5.13 Stream
The stream functionality represents a stream of data to a provider (downstream) or a
stream of data from a provider (upstream).

Unlike proc, the stream functionality has only one associated signal at the provider
side, the strobe signal. The proc has distinct call and exit signals. However, as the
stream shall have only parameters (downstream) or only returns (upstream), having one
associated signal is enough.
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6 Language absent features
The FBDL does not provide some of the popular capabilities present in some of the
register-centric approach tools. This chapter lists the most common ones and explains
why they are absent. However, their absence does not mean that they will never be
added. At the current stage, their disadvantages are clear, but the potential advantages
they might bring are vague.

6.1 Two-writer data
Two-writer data (the term derived from the “two-writer register” term [89]) can be written
by both the requester and the provider (FBDL specification nomenclature). In practice,
both can write data, the firmware/software side and the gateware/hardware side. This
is possible in some of the register-centric tools. For example, SystemRDL refers to this
aspect as the software and hardware access properties. In the FBDL, there is no func-
tionality that would end up as data that can be written by both the requester and the
provider sides. There is always one side writing the data and zero, one or two sides read-
ing the data (zero is possible, although it means that the functionality is unused). This
can lead to increased address space size and resource utilization. However, it cuts off
all problems related to designing and debugging systems with multiple data writers. As
the resulting increase in resource utilization is relatively small (the number of required
flip-flops is the same, only extra logic related to increased address space size is needed),
and devices provide more and more resources every year, it has been decided that this
tradeoff is worth to take. Allowing flip-flops to be written by two sources also increases
resource utilization. However, it does not increase the address space size.

The one-writer restriction does not mean multiple requesters can not write, for example,
the same config. This means that if the requester side can write some data, the provider
side must not. The number of requesters allowed to write is unlimited.

The one-writer restriction also does not mean that different data, writable by different
sides, can not be placed in the same physical register (the same register address). Listings
41 and 42 show examples.
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Config C and status S occupy precisely half of the register width. As the requester side
is the writer of config C and the reader of status S, and the provider side is the reader of
config C and the writer of status S, both functionalities can be put into the same register
without any overhead. The required address space size equals 1.

Procedure P has no data, so it needs only address for call triggering. Status ST occupies
the whole register. As the requester side is the writer of procedure P and the reader of
status ST, and the provider side is the reader of procedure P (it reads the call signal) and
the writer of status ST, both functionalities can be put into the same register without
overhead. The required address space size equals 1.

Main bus
C config; width = 16
S status; width = 16

Listing 41: Example of config and status that can share register address.

Main bus
P proc
ST status

Listing 42: Example of proc and status that can share register address.

6.2 Enumeration type
The first issue with the enumeration type is that the FBDL description is not directly
compiled into the machine code or synthesized into the digital logic. The FBDL descrip-
tion is transpiled. In other words, it is compiled into other programming or hardware
description languages. However, those other languages do not share a common definition
of the enumeration type. Let us analyze three currently prevalent system programming
languages:

1. C - enum type is a list of constant values.

2. Go - no support for any kind of enum type at all.

3. Rust - enum type is actually a union type or a sum type.

One of the goals of the FBDL is to add compiler back-ends for target languages easily.
Extending FBDL with features peculiar to any target language or a subset of target
languages is against this rule. Usually, when speaking about enumeration type in the
context of register management, a set of constant possible values is meant This is already
achievable in FBDL using constant definitions, listing 43. As constants are bound to a
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scope, the values in generated files can also have limited scope. Limiting the set of valid
values for some functionalities using the range property is also already possible.

# Global constants.
const E = 2.72
const PI = 3.14
const LN2 = 0.69
Main bus

# Shorter form using multi constant definition.
# Below constants are scoped only to the Main bus.
const

ZERO = 0
ONE = 1
TWO = 2

# Range of possible values is limited for below config
# from ZERO to TWO.
c config; range = [ZERO, TWO]

Listing 43: Constraining value range using constants or range property.

The second issue with the enumeration type is the synchronization of enumeration type
values. This is a more general issue, not related only to the register management tools. Let
us suppose the enumeration type is a list of constant values (the simplest enum definition).
Figure 6.1 presents an example system design with three actors: firmware, gateware, and
software. The enumeration type definitions between actors must be consistent (the same
values for corresponding options).

Figure 6.1: Example system with enumeration types synchronization issue.

There are at least three ways to approach the problem.

1. The FBDL is the source of the enumeration type definitions. The drawback of
this approach is introducing an internal dependency on the FBDL output inside
the firmware, gateware, and software modules. The modules start to not only use
the FBDL output to access or provide the functionalities, but also internally to
implement its own logic or data structures. For example, the gateware module unit
testbench requires type generation and can no longer be run in isolation.
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2. There is a single source of enumeration type definitions, but it is not FBDL. This
approach has three possible implementations, but all of them require an extra tool
for updating derived definitions.

(a) Enumeration type definitions are derived from the software/firmware source
code. The drawback is that different languages are often used for prototyping
and final implementation

(b) Enumeration type definitions are derived from the gateware/hardware descrip-
tion. The hardware description language, once chosen, rarely changes during
the project.

(c) Enumeration type definitions are derived from the dedicated tool with its syn-
tax for definitions.

3. Enumeration type definitions are implemented manually for all languages. However,
a tool (some sanitizer) is capable of checking that all enumeration type definitions
are coherent. As not all sources are always available in the repository, the tool would
have to support fetching sources via version control systems or accessing them via
URL.

While working on numerous projects, the author has encountered most of the mentioned
approaches. As it is not clear that the approach with the register management tool being
the source of the enumeration type definitions has advantages over other approaches, it
has been decided that adding support for enumeration type within the language at the
current stage is not sufficiently justified.

6.3 Custom expression functions
The FBDL does not allow defining custom functions for expression evaluation. This is
possible with all tools providing programming language API for description definition, as
in this case, all programming language features are “inherited” and can be used without
any limitations. This is a very flexible mechanism, but it sometimes leads to abuses. The
bus/register management tool starts to be used as a general-purpose design configuration
tool storing information unrelated to the bus or registers. The FBDL’s goal is to be a bus
and register management tool, nothing less, nothing more. However, the FBDL contains
built-in functions (listed in the specification) frequently used for bus or register-related
calculations.
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6.4 Manual addressing
Some of the register-centric tools allow manual register addressing. Manual addressing
is setting the register address explicitly. Placing some data at a fixed address might be
useful in case of bus identification or block versioning.

The FBDL does not allow manual addressing because of two reasons. The first one is that
in FBDL, the user does not define registers but data with its functionality type. This,
of course, does not imply any implementation blockers for manual addressing support,
as the address in such a case could be the start address of the data. However, manual
addressing does not fit into the FBDL paradigm. The second reason is that any decent
compiler should automatically insert a bus identification number at some fixed address.
Placing single data with a unique value at a fixed address is enough to identify an address
map unambiguously. Based on this information, the firmware or software can load the
appropriate address map code and access any data, for example, block version, even if its
address differs between versions. In such a case, supporting manual addressing does not
solve any problems but increases the complexity of registerification algorithms.

6.5 Custom attributes
SystemRDL allows for defining custom properties. Such a mechanism can be useful for
tuning the compiler behavior. On the other hand, it opens a space for inconsistency
between compilers as they are free to ignore unknown custom properties. The FBDL does
not support custom properties at the current stage, but it reserves syntax and terminology.
The term “attributes” will be used for custom properties if supported. Custom attributes
will be assigned the same way the properties are assigned, but the attribute names will
be prepended with the ’@’ (at sign) character, listing 44 presents an example.

Main bus
@addressing -mode = "Compact"

Listing 44: Syntax reserved for custom attributes.

It is worth mentioning that compiler behavior can be tunable even without custom at-
tributes using additional compiler command line parameters. The FBDL specification is
also open to adding more properties if their existence is justified.
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7 Compiler implementation
This chapter describes the implementation of the proof of the concept compiler for the
FBDL. As the comprehensive description would be relatively long and would include
aspects irrelevant from the thesis point of view, the chapter describes only the overall
structure and focuses on some general details that probably any FBDL-compliant compiler
will have to face.

The compiler has been divided into two parts, the front-end [90] and the back-end [91],
both of which are publicly available. The front-end is responsible for reading FBDL
description files, parsing them, instantiating functionalities, and carrying out the regis-
terification process, all according to the FBDL specification. The back-end is responsible
for taking the registerification result and generating the desired target code. The de-
cision to divide the compiler into the front-end and back-end has been driven by two
factors.

1. Regardless of the target, any compiler must carry out the parsing, instantiating, and
registerification phases. However, what is later done with the registerification results
for a particular target highly depends on the target itself. A Python interface with
dynamic loading of address maps and asynchronous access has an entirely different
code structure than, for example, a C module with a statically compiled address map
and synchronous access. The border between what is common and what depends
on the target is quite straightforward, and splitting the compiler into the front-end
and back-end feels quite natural.

2. If the compiler were monolithic and released with any restrictive license, such as
GPL-3.0, it would not be possible to incorporate it directly into proprietary, closed-
source programs. If the compiler were monolithic and released with any permissive
license, for example, MIT, then anyone could take it as is and fix bugs or imple-
ment improvements without reporting it. The modular structure of the compiler
is a compromise. Any changes applied by a third party to the front-end must be
reported. However, it is still possible to write a closed-source back-end. In such a
case, the closed-source back-end must call the front-end as an external program and
dump the registerification result into a JSON file. The back-end can then read the
JSON file.

The compiler front-end supports all functionality types described in chapter 5. The com-
piler back-end supports all functionality types used in chapter 8.
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Figure 7.1 presents the implemented compiler’s current (at the time of dissertation writ-
ing) structure. Input .fbd files are parsed in parallel by the parser module. Both instan-
tiation and registerification modules run internally in a sequential manner. Generators
for different targets are run in parallel if a user asks for multiple outputs in a single call.
Moreover, if code for a given target is placed in multiple files, then the files are also
generated in parallel.

Figure 7.1: Current structure of the implemented compiler.

7.1 Front-end
The front-end of the compiler is responsible for processing everything defined in the FBDL
specification except the access means, as they highly depend on the target. It is internally
built of three stages: parsing, instantiation, and registerification.
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7.1.1 Description file parsing
The parsing stage is responsible for building abstract syntax trees for description within
files. As there are no inter-file dependencies during the parsing stage, running this stage in
parallel (true parallelism) is easy. The parser has been generated using the tree-sitter tool
[92]. The defined grammar is available online [93]. Tree-sitter is a parser generator tool
based on the GLR [94] parsing algorithm working most efficiently with a class of context-
free grammars. It allows for rapid prototyping, but it is not free of drawbacks. The main
one is error handling. Suppose the syntax provided by the user is not valid. In that case,
giving informative feedback to a user on what exactly is wrong requires relatively more
work than a hand-written custom parser, or sometimes is even impossible.

7.1.2 Functionality instantiation
The instantiation stage is responsible for instantiating functionalities starting from the
Main bus description. As the type parametrization is resolved at this stage, it is not
truly parallel. There are two possible approaches. The first one is to run this stage
sequentially. The sequential approach is simpler to implement. The second one is to run
the instantiation stage in parallel. The parallel approach is more complex to implement.
Moreover, it requires more data copying internally, as each instantiation worker might
have different values of type arguments in different scopes. The proof of the concept
compiler sequentially implements the instantiation stage. The whole compilation process
is relatively short. A bus with up to 40 functionalities takes less than 10 ms to compile
(front-end and back-end) on a platform with Intel i7-8750H CPU. The gain from the
parallel instantiation would not be worth the extra complexity added to the code.

7.1.3 Functionality registerification
The registerification stage is responsible for putting functionalities into the actual regis-
ters. This stage includes assigning data bit masks, register addresses, block addresses,
and masks, as well as access types. The registerification stage is relatively complex to
implement in parallel, as it requires determinism. The registerification algorithms must
be deterministic because, in the case of non-determinism, registerification of the same bus
may lead to different register layout and performance. Although the specification does not
forbid such behavior, it is highly impractical. What is more, the registerification stage has
a sequential nature. To optimize generated address space size, functionalities (if possible)
must be put into the gaps created during the registerification of other functionalities This
implies data dependency in the registerification algorithm.
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Access types

During the registerification stage, it must be determined how the data of the functionality
must be accessed. The access types are not defined in the specification, so each compiler is
free to adopt its policy. For example, a compiler highly optimized for AXI byte addressing
will probably implement different access types than some generic multi-target compiler
supporting both byte and word addressing.

The implemented compiler has six access types:

1. Single One Reg

2. Single N Regs

3. Array One In Reg

4. Array N Regs

5. Array N In Reg

6. Array N In Reg M In End Reg

The Single One Reg access type is the simplest access type used for single data fitting a
single register. Listing 45 presents a description with three data of Single One Reg access
type, and figure 7.2 presents an example register layout. The Single One Reg access type
requires address and mask (start bit and end bit) attributes to describe unambiguously
how to access the data.

Main bus
C config; width = 12
S0 status; width = 20
S1 status

Listing 45: Example bus with three data of Single One Reg access type.

Figure 7.2: Example register layout of data of Single One Reg access type.

The Single N Regs access type is used to describe the access to data spanning multiple
adjacent registers. Listing 46 presents a description with two data of Single N Regs access
type, and figure 7.3 presents an example register layout. The Single N Regs access type
requires start address, start bit, and width attributes to describe unambiguously how to
access the data.
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Main bus
S0 status; width = 87
S1 status; width = 41

Listing 46: Example bus with two data of Single N Regs access type.

Figure 7.3: Example register layout of data of Single N Regs access type.

The Array One In Reg access type is used to describe access to array data with a single
element placed within a single register. Listing 47 presents a description with one array
data of Array One In Reg access type, and figure 7.4 presents an example register layout.
The Array One In Reg access type requires start address, mask (start bit and end bit),
and elements count to describe unambiguously how to access the data.

Main bus
S [3]status; width = 24

Listing 47: Example bus with one data of Array One In Reg access type.

Figure 7.4: Example register layout of data of Array One In Reg access type.

The Array N Regs access type is used to describe access to array data with elements
placed adjacent to each other even if the gap in the register is narrower than the single
element width. Listing 48 presents a description with two array data of Array N Regs
access type, and figure 7.5 presents an example register layout. S0 is two-element array
data with single element width greater than the register width. S1 is four-element array
data with single element width smaller than the register width. The Array N Regs access
type requires start address, start bit, and elements count to describe unambiguously how
to access the data.
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Main bus
S0 [2]status; width = 40
S1 [4]status; width = 12

Listing 48: Example bus with two data of Array N Regs access type.

Figure 7.5: Example register layout of data of Array N Regs access type.

The Array N In Reg access type is used to describe access to array data with multiple
elements placed in one register and with all registers having the same number of items.
Listing 49 presents a description with two array data of Array N In Reg access type, and
figure 7.6 presents an example register layout. S0 is six-element array data with single
element width being the divisor of the reigster width. S1 is four-element array data with
single element width not being the divisor of the register width. The Array N In Reg
access type requires start address, start bit, element width, and elements count to describe
unambiguously how to access the data.

Main bus
S0 [6]status; width = 16
S1 [4]status; width = 14

Listing 49: Example bus with two data of Array N In Reg access type.

Figure 7.6: Example register layout of data of Array N In Reg access type.
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The Array N In Reg M In End Reg access type is used to describe access to array data with
multiple elements placed in one register and with all registers having the same number of
items except the last one. Listing 50 presents a description with two array data of Array
N In Reg M In End Reg access type, and figure 7.7 presents an example register layout.
S0 is five-element array data with single element width being the divisor of the reigster
width. S1 is five-element array data with single element width not being the divisor of
the register width. The Array N In Reg M In End Reg access type requires start address,
start bit, element width, and elements count to describe unambiguously how to access
the data.

Main bus
S0 [5]status; width = 16
S1 [5]status; width = 10

Listing 50: Example bus with two data of Array N In Reg M In End Reg access type.

Figure 7.7: Example register layout of data of Array N In Reg M In End Reg access type.

Registerification algorithm

The only registerification algorithm requirement imposed by the specification is determin-
ism. A compiler must produce the same registerification result when run multiple times
with exactly the same input and arguments. Everything else related to the registerifica-
tion algorithm is up to a compiler. A single compiler may provide multiple registerification
algorithms that are configurable, for example, via a command line parameter.

Although a compiler has freedom in terms of the registerification algorithm, there are
some general recommendations that, when followed, ease the implementation. The below
recommendations work when functionalities are registerified one by one. That is, once
picked, the functionality is ultimately registerified with its final hardware address. They
might not be valid in the case of more sophisticated algorithms, for example, when procs,
streams, and groups are first registerified internally and later organized in a sequence
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optimizing generated address space sizes. Some recommendations with greater indexes
assume that some recommendations with lower indexes are met.

1. If the minimum number of registers for storing single functionality equals N (N =

ceil(functionality width/data bus width)), then this functionality should be placed
into N registers. Theoretically, putting it into M (M > N) registers can save some
address space if enough gaps exist. However, as the compiler knows nothing about
the access interface during the compilation, an artificial increase of the number of
registers needed for functionality can greatly increase the access time if the access
interface does not support block transactions or if gaps are not placed in consecutive
registers. A small address space size decrease is usually not worth an access time
increase in such cases, as the round trip latency in some cases might be significant.

2. Proc and stream are encapsulated functionalities. Params and returns can always
be aligned to each other if params are not readable. The gaps are possible only
at the edges. The call register (or downstream strobe register) must not have any
external writable functionality such as config or mask as the write generates the
call strobe. If proc params are readable, the exit register must not have any proc
params. Moreover, the exit register must not have any functionality not belonging
to the proc. This is because the read generates an exit pulse, and all functionalities
in such a case are readable. As the specification does not impose whether proc
params are readable, it depends on the compiler implementation. If the compiler
does not allow param read, then it is safe to put proc params in the exit register.
In such a case, the params might belong to the same proc or to another one, but
all of them must belong to the same proc. To sum up, a gap after proc or stream
registerification is created only when:

(a) Proc has only params, or stream is downstream, and the sum of param widths
is not multiples of the register width. Such a gap can be filled with functionality
that is read-only, for example, static or status. If params cannot be read, then
it is also safe to fill the gap with irq (if it is cleared on read) or proc with only
returns or upstream. If params can be read, then it is also safe to fill the gap
with returns if it will not create an exit or strobe register.

(b) Proc exit register is pure, or stream is upstream, and params are not readable.
In such case, it is safe to place proc or stream params in the exit register of
another proc or strobe register of another stream.

3. Array functionalities should be registerified before single functionalities. It is eas-
ier to place single functionalities in the gaps created during array functionalities
registerification than the reverse way.
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4. Groups (functionalities belonging to groups) should be registerified before func-
tionalities without groups. This is because groups impose relative placement of
functionalities.

5. The order of groups registerification and the order of functionalities registerification
within the groups are separate, orthogonal issues. The implementation should not
introduce unnecessary dependency.

6. Single and array functionalities should be sorted before registerification. Wider
functionalities should be registerified as the first ones. For example, let us consider
bus description from listing 51.

Main bus
P proc

p param; width = 20
S0 status; width = 4
S1 status; width = 12
S2 status; width = 28

Listing 51: Bus description presenting sorting effect on registerification result.

The proc P being encapsulated functionality is registerified as the first one. It leaves
a 12-bits gap. If statuses are registerified in the appearance order, then 3 registers
are required. This is shown in figure 7.8.

Figure 7.8: Register layout without functionality sorting.

However, if functionalities are first sorted in width decreasing order, then only 2
registers are needed. This is shown in figure 7.9.

Figure 7.9: Register layout with functionality sorting.

This recommendation does not apply to single functionalities wider than the bus
width. Such a case is more complicated as the optimal registerification depends
also on the access atomicity. One possible implementation is to take the widest
functionality and check if it can fulfill the last gap. If not, then simply registerify

85



it starting from the next address. This approach is very simple to implement.
However, it is not optimal in terms of the generated address space size.

7. Writable functionalities, such as config or mask, should be registerified before read-
only functionalities, such as status and static. This is because read-only function-
alities are very flexible. They can be placed in almost any gap. For example, let us
consider bus description from listing 52.

Main bus
S0 status; width = 16
S1 status; width = 10
C0 config; width = 16
C1 config; width = 10

Listing 52: Bus description presenting registerification order change.

If statuses are registerified before configs, then 3 registers are required. This is
shown in figure 7.10.

Figure 7.10: Register layout for status -> config order.

If configs are registerified before statuses, then 2 registers are required. This is
shown in figure 7.11.

Figure 7.11: Register layout for config -> status order.

Address allocation

The FBDL specification does not enforce any particular addressing mode or address
allocation algorithm. It is left to the compiler implementation. In contrast, System-
RDL formally defines three addressing modes: compact, regalign, and fullalign.
A SystemRDL-compliant compiler should provide support for all of them. An FBDL-
compliant compiler can be implemented with a fixed addressing mode, which eases the
compiler implementation.

It is commonly known that assigning subsequent addresses to the registers and blocks
without proper alignment results in suboptimal address decoders. This increases resource
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utilization and the critical path length, lowering the maximum bus clock frequency. There-
fore, the implemented proof of the concept compiler uses an address allocation algorithm
oriented on the optimization of address decoders.

If a block requires B bits for internal addressing, then its overall address space is aligned
to the 2B boundary. That ensures that the access to the block may be easily decoded by
a simple binary comparison of address bits B to (address bus width− 1). This task can
be easily performed by bus crossbars to which the blocks are connected.

The address allocation algorithm also minimizes the occupied address space by avoiding
unnecessary fragmentation. This is achieved by applying the following rules:

1. For each block, the size of the required minimal block address space M is calculated
as the sum of the required addresses for local registers and the address space size
required for subblocks. The block address space size is rounded up to the nearest
power of two: S = 2N , where N is the smallest integer for which 2N ≥ M . The S

value is the size of the block address space. This step is performed recurrently, as
the sizes of subblock address spaces are required to calculate the size of the parent
block address space.

2. The local block registers are located at the beginning of the address space in each
block. The subblocks are sorted according to their decreasing size and are placed
starting from the end of the block’s address space.

3. The final address map is built starting from the top block (Main bus) located at
address 0 and traversing its subblocks.

The described address allocation procedure corresponds to the regalign addressing mode
from the SystemRDL specification. It also explains why there is unused address space in
the register map in Appendix C.

7.2 Back-end
The compiler’s back-end is responsible for generating code for a particular target. It must
generate the means required to access the functionalities. There is no inter-dependency
between code generated for different targets, so it is easy to run target code generation
in parallel for multiple targets.

The architecture and design of the code generated for the target highly depend on the
overall system requirements. Access to the data can be implemented synchronously or
asynchronously. Asynchronous code is conceptually harder to generate and use but po-
tentially (if done right) improves system performance. The generated target code can load
the address map statically or dynamically. Dynamic loading of address map is harder to
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implement. However, it can be beneficial when working with multiple versions of the same
description or devices with entirely different buses. In the case of dynamic address map
loading, there is no need to regenerate the target code and potentially recompile the code,
as dynamic loading requires only the registerification results. The target language also is
an important factor. Generating code for dynamic, weakly typed languages (e.g. Python,
Perl, Lua) is generally a simpler task than generating code for compiled, strongly-typed
languages (e.g. Ada, C, Rust).

Figure 7.12 presents a simplified connection scheme of a system utilizing FBDL. It shows
two modules within the requester and the provider, but an even more elementary design
with a single module is possible. However, what is more important is that automatically
generated code must be connected to the access interface. The compiler can also generate
the access interface code, but it is not recommended for at least two reasons. The first
one is that FBDL does not specify anything about the access interface, so keeping it out
of the compiler keeps the whole design architecture cleaner. The second one is that in
case of extending the interface or replacing it with another one, for example, to improve
performance, there is no need to regenerate the code or recompile the compiler.

Figure 7.12: Simplified connection scheme of a system utilizing FBDL.

In theory, a functionally complete access interface requires only two functions:

1. read,

2. write.

However, single read and single write functions may not be sufficient in a system having
rigid performance requirements. Frequently carried transactions are block read and block
write, as well as accessing register with the same address multiple times (often called
cyclic/fixed read/write or constant address read/write), for example, to read a FIFO. A
slightly enhanced access interface should also provide distinct functions for:
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1. block read,

2. block write,

3. cyclic read,

4. cyclic write.

In more complex systems, there also may be a need for vectored (scatter/gather) IO. In
such a case, the access interface should also provide distinct functions for:

1. vectored read,

2. vectored write.

In the case of the most performance-demanding systems, there also might be a need for
cyclic block (also called wrapped transactions) and cyclic vectored transactions.

In practice, a functionally complete access interface requires the following twelve func-
tions:

1. read - single register read,

2. write - single register write,

3. cread - cyclic (fixed) read,

4. cwrite - cyclic (fixed) write,

5. readb - block read,

6. writeb - block write,

7. creadb - cyclic block read (wrapped read),

8. cwriteb - cyclic block write (wrapped write),

9. readv - vectored (scatter/gather) read,

10. writev - vectored (scatter/gather) write,

11. creadv - cyclic vectored (scatter/gather) read,

12. cwritev - cyclic vectored (scatter gather) write.

The list proposes names for particular transactions. As the names for vectored opera-
tions (readv, writev) are already defined in the POSIX standard, extending this naming
convention further makes sense. This implies that the type of the operation is indicated
by the single character suffix, b for block and v for vectored. Single read (read) and
single write (write) do not have any suffixes, as this is a common practice. Whether the
transaction is cyclic is indicated by the single letter prefix (c).
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The access interface does not have to provide all of the transactions, and even if it does,
the last ten can be implemented on top of the read and write. In such a case, there
will not be any performance gain, but the programming interface will be easier to use,
as there will be no need to implement these functions manually. It is worth mentioning
that the performance of the access interface can be improved step by step only when
necessary. For example, in the project’s initial phase, the readb/writeb can be internally
implemented as a loop of read/write calls. If, in a later phase, the performance of the
block transactions becomes a bottleneck of the system, a true block access can be added to
the interface internal implementation. The access interface can also be wholly reworked
or replaced at any phase of the project, and this will not result in any changes in the
bus description. In other words, the bus description and the access interface are entirely
independent.

There is also one more transaction type frequently found in access interfaces, the rmw
(read-modify-write) transaction. The rmw is an atomic operation typically used to imple-
ment synchronization mechanisms or to reduce the round-trip latency. For example, if
the provider supports rmw internally, the round-trip of remote access is cut by half, or
even more if the requester does not care about the acknowledgment. Figure 7.13 presents
sequence diagrams for rmw transaction without and with provider support for rmw. The
last acknowledgment message may be ignored if the requester does not care whether the
operation succeded or failed.

Figure 7.13: Sequence diagrams for rmw transaction without and with provider support
for rmw.
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The rmw transaction at the provider side can be implemented in two ways. In the first
way, the rmw transaction is part of the bus protocol and is supported by the primary bus
master. This way provides the lowest possible latency for the rmw. In the second way,
there is an extra, dedicated master offering rmw implemented as an FBDL procedure.
Listing 53 presents an example RMW procedure described in FBDL. In actual use cases,
the widths of parameters depend on actual bus architecture. All remaining functionalities
have been removed for brevity.

Main bus
RMW proc

addr param
operation_type param
data param
data_mask param

Listing 53: Example read-modify-write FBDL procedure.

Figure 7.14 shows an example bus structure with an extra master providing rmw transac-
tion support. Such a design has higher rmw transaction latency than a design with rmw
transaction supported directly by the primary master, as the primary master has to first
write rmw parameters in the extra master. However, the overall rmw latency is still much
lower than in the case when the provider does not support rmw transaction at all.

Figure 7.14: Example bus structure with extra master providing rmw transaction support.
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8 Example design
This chapter presents two example descriptions of the same system. The first description
uses the register-centric approach and utilizes the AGWB tool. The second description
uses the functionality-centric approach and utilizes FBDL. The AGWB tool was chosen for
the register-centric approach because of two reasons. The first one is that AGWB belongs
to the class of register-centric tools abstracting registers and bit fields as objects, which
makes it safer than the register-centric class providing users with addresses, masks, and
bit shifts. The second reason is that both AGWB and FBDL use the same VHDL library
for the Wishbone bus, which makes the analysis and comparison easier as bus-related
signals share the same types.

Listing 54 presents the example bus description in the register-centric AGWB format,
and listing 55 presents the same bus in the functionality-centric FBDL format. The first
noticeable difference is the verbosity of the register-centric description (64 lines vs 30
lines). This is because the AGWB is based on the XML format, and FBDL is a domain-
specific language. However, a functionality-centric approach can also be based on any
popular format, such as YAML, JSON, or XML.

Lines of code at first seem like a good metric for code quality. However, the author of
[95] provides arguments for desisting from using lines of code as a predictor of software
quality.
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<sysdef top="Main">
<block name="Subblock_t">

<!-- Add0, Add1 and Sum registers are part of the addition procedure. -->
<creg name="Add0">

<field name="A" width="20"/>
<field name="B" width="10"/>

</creg>
<creg name="Add1" stb="1">

<field name="C" width="8"/>
</creg>
<sreg name="Sum" width = "21"/>

<!-- Add_Stream0 and Add_Stream1 are part of the addition stream. -->
<creg name="Add_Stream0">

<field name="A" width="20"/>
<field name="B" width="10"/>

</creg>
<creg name="Add_Stream1" stb="1">

<field name="C" width="8"/>
</creg>
<!-- Sum_Stream is part of the sum stream. -->
<sreg name="Sum_Stream" ack="1" width="21"/>

</block>

<block name="Main">
<creg name="C1" width="7"/>
<creg name="C2" width="9"/>
<creg name="C3" width="12"/>

<sreg name="S1" width="7"/>
<sreg name="S2" width="9"/>
<sreg name="S3" width="12"/>

<creg name="CA4" reps="2">
<field name="Item0" width="8"/>
<field name="Item1" width="8"/>
<field name="Item2" width="8"/>
<field name="Item3" width="8"/>

</creg>
<creg name="CA2">

<field name="Item0" width="8"/>
<field name="Item1" width="8"/>

</creg>

<sreg name="SA4" reps="2">
<field name="Item0" width="8"/>
<field name="Item1" width="8"/>
<field name="Item2" width="8"/>
<field name="Item3" width="8"/>

</sreg>
<sreg name="SA2">

<field name="Item0" width="8"/>
<field name="Item1" width="8"/>

</sreg>

<sreg name="Counter0" width="32"/>
<sreg name="Counter1" width="1"/>

<subblock name="Subblock" type="Subblock_t"/>

<creg name="Mask" width="16"/>
<sreg name="Version" width="3*8"/>

</block>
</sysdef>

Listing 54: Example bus description in the register-centric AGWB format.
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Main bus
C1 config; width = 7
C2 config; width = 9
C3 config; width = 12

S1 status; width = 7
S2 status; width = 9
S3 status; width = 12

CA [10]config; width = 8
SA [10]status; width = 8

Counter status; width = 33

Subblock block
Add proc

A param; width = 20
B param; width = 10
C param; width = 8
Sum return; width = 21

Add_Stream stream
A param; width = 20
B param; width = 10
C param; width = 8

Sum_Stream stream
Sum return; width = 21

Mask mask; width = 16
Version static; width = 3*8; init-value = 0x010102

Listing 55: Example bus description in the functionality-centric FBDL format.

In listings 54 and 55, C1, C2, and C3 represent control information, and S1, S2, and S3
represent status information. Within the testbench design, C1 is directly connected to
S1, C2 to S2, and C3 to S3. In listing 55, CA denotes an array of control data, and SA
denotes an array of status data. Listing 54 represents the same data as CA4, CA2, SA4,
and SA2 registers. Within the testbench design, the CA array is connected directly to the
SA array. In listing 55, the Counter represents status data wider than the bus width. The
same Counter is represented in listing 54 as registers Counter0 and Counter1. The Mask
data represents bit mask control data, and it is not connected in the testbench design as
it only serves to present the difference between the software interface generated for bit
mask handling. The Version data represents static information and is directly driven in
the testbench design with a fixed value. Figure 8.1 presents the conceptual connection of
the data in the testbench design.
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Figure 8.1: Conceptual connection of the data in the testbench design.

Both descriptions have been functionally verified in co-simulations. The repository [96]
contains hardware descriptions and software codes used for co-simulations. It also contains
all automatically generated files in the autogen directory so that readers do not have to
install any application to view all relevant files. From the reader’s point of view, the most
important files are tb_agwb.vhd, tb_fbdl.vhd, test_agwb.py, test_fbdl.py, and all
files placed in the autogen directory. All remaining files are dependency or script files
related to the build and run automation and are irrelevant to the analysis. All listings in
the chapter come from the repository.

Figure 8.2 presents the logical structure of the FBDL example design co-simulation. The
logical structure of the AGWB example co-simulation looks almost the same. In the case
of AGWB, the content of yellow blocks is replaced with files generated by the AGWB
compiler, and files test_fbdl.py and tb_fbdl.vhd are replaced with test_agwb.py and
tb_agwb.vhd.
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Figure 8.2: Logical structure of the FBDL exapmle design co-simulation.

Appendix B contains registerification results for the bus description from listing 55. This
data is produced by the compiler front-end and utilized by the compiler back-end as
input data for hardware/gateware description and firmware/software code generation.
Appendix C, created manually based on the registerification results, presents the exam-
ple design register map. Appendix D presents Python code (vfbdb.py) automatically
generated by the FBDL compiler for the example design description. Python code snip-
pets within subsections 8.1.1, 8.1.2, 8.1.3, 8.1.4, and 8.1.5 directly interact with the code
from the appendix to access registers in the automatically generated hardware descrip-
tion. Appendix E contains the VHDL description generated by the FBDL compiler for
the Main bus entity (Main.vhd), and Appendix F contains VHDL description generated
for the Subblock entity (Subblock.vhd).
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Listing 56 presents the VHDL interface of the Main entity generated by the register-
centric AGWB, and listing 57 presents the VHDL interface of the Main entity generated
by the functionality-centric FBDL compiler. The AGWB defines custom subtypes for
the ports. However, these subtypes are simple std_logic_vector types, which is irrel-
evant to the analysis. The primary difference is that in the case of the register-centric
approach, the user is provided with ports representing registers. However, in the case of
the functionality-centric approach, the user is provided with ports representing data. In
the example case, it is visible for CA and SA versus CA4, CA4, SA4, and SA2, as well as
for the Counter, which is 33 bits wide and in the case of the register-centric approach, it
must be divided into two registers manually (Counter0 and Counter1).

entity Main is
port (

rst_n_i : in std_logic;
clk_sys_i : in std_logic;

slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;

Subblock_wb_m_o : out t_wishbone_master_out;
Subblock_wb_m_i : in t_wishbone_master_in;

C1_o : out t_C1;
C2_o : out t_C2;
C3_o : out t_C3;
S1_i : in t_S1;
S2_i : in t_S2;
S3_i : in t_S3;
CA4_o : out ut_CA4_array(g_CA4_size - 1 downto 0);
CA2_o : out t_CA2;
SA4_i : in ut_SA4_array(g_SA4_size - 1 downto 0);
SA2_i : in t_SA2;
Counter0_i : in t_Counter0;
Counter1_i : in t_Counter1;
Mask_o : out t_Mask;
Version_i : in t_Version

);
end Main;

Listing 56: Interface of the VHDL Main entity generated by the register-centric AGWB.
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entity Main is
port (

clk_i : in std_logic;
rst_i : in std_logic;

slave_i : in t_wishbone_slave_in_array (1 - 1 downto 0);
slave_o : out t_wishbone_slave_out_array(1 - 1 downto 0);

Subblock_master_o : out t_wishbone_master_out_array(0 downto 0);
Subblock_master_i : in t_wishbone_master_in_array(0 downto 0);

ID_o : out std_logic_vector(31 downto 0) := x"d2600e2f";

C1_o : buffer std_logic_vector(6 downto 0);
C2_o : buffer std_logic_vector(8 downto 0);
C3_o : buffer std_logic_vector(11 downto 0);
S1_i : in std_logic_vector(6 downto 0);
S2_i : in std_logic_vector(8 downto 0);
S3_i : in std_logic_vector(11 downto 0);
CA_o : buffer slv_vector(9 downto 0)(7 downto 0);
SA_i : in slv_vector(9 downto 0)(7 downto 0);
Counter_i : in std_logic_vector(32 downto 0);
Mask_o : buffer std_logic_vector(15 downto 0);
Version_o : out std_logic_vector(23 downto 0) := x"010102"

);
end entity;

Listing 57: Interface of the VHDL Main entity generated by the FBDL compiler.

8.1 Functionality-centric approach advantages
The author described the advantages of the functionality-centric approach in [97]. How-
ever, the description in the thesis provides more details.

Before any comparisons, the author would like to introduce the “advantage classes” term.
The term is not formal but helps to classify the advantages of the functionality-centric
approach over a register-centric approach. The advantage class is a characteristic of
the quality of the work. There are four advantage classes listed below in alphabetical
order:

1. Maintainability (M) - indicates how easy it is to modify the system behavior,

2. Readability (R) - denotes the ease of understanding the system,

3. Safety (S) - represents the probability of human mistake,

4. Time (T) - represents the time required to implement, adjust, or correct the system.
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Although the advantage classes are defined, the metrics for Maintainability, Readability,
and Time classes are not introduced. This is because the classes are a bit fuzzy, and it
is impossible to introduce objective metrics that cannot be questioned. Maintainability,
readability, and time are also very subjective concepts. A proof of this fact might be
the literature review prepared by authors of [98], who found that until the year 2013,
there were about 13000 publications that used lines of code as one of the features for the
code quality and maintainability prediction. The total number of publications trying to
approach the software quality assessment problem was even greater, as there were also
publications not including lines of code. FBDL users are assumed to evaluate solutions in
advantage classes based on their expert knowledge, experience, and common sense.

The primary problem with applying objective numerical metrics for code quality assess-
ment is the lack of common definitions. There is not even a single standard definition
of readability in the computing domain. Authors of [99] define readability as “a human
judgment of how easy a text is to understand”, authors of [100] define readability as “a
property that influences how easily a given piece of code can be read and understood”, but,
for example, authors of [101] define readability as “the capability of the code that makes
it readable and understandable for professionals.”

There is also no consensus on what constitutes code readability. Most of the proposed
models consider structural and visual aspects of code. However, for example, the authors
of [102] propose to take into account also textual features. The way the code readability
assessment problem is approached is also still evolving. Older methods utilized statistics
and graph theory, but, for example, [103] and [104] propose using neural networks.

Some of the proposed advantage classes are also interdependent. For example, the author
of [105] claims that source code readability is critical to the maintainability of a project,
although it is not the only aspect that constitutes it. The readability also impacts the
time required to adjust or correct system implementation in case of bugs or requirement
changes.

The secondary problem with applying objective numerical metrics is that authors of pub-
lications rarely make implementations available. They describe details of their models,
but the user has to implement them by himself. There are no ready-to-use programs that
can be easily installed and used for free.

For the Security class, there is a binary metric because in the register-centric approach
certain error scenarios are possible, while the functionality-centric approach inherently
prevents them.
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Titles of subsections 8.1.1, 8.1.2, 8.1.3, 8.1.4, and 8.1.5 are suffixed with letters indicating
what advantages classes are brought by the functionality-centric approach compared to the
register-centric approach. Within subsections, the author justifies why the functionality-
centric approach is advantageous compared to the register-centric approach. Although the
author thinks most advantage classes should be assigned to all the presented advantages,
only the most significant ones have been chosen.

8.1.1 Automatic data placement (MT)
In the example design, C1, C2, and C3 represent control information, and S1, S2, and
S3 represent status information. The first difference between the register-centric and
functionality-centric approaches is that although they represent the same information,
they are different entities. In the case of the register-centric approach, the information
is represented as registers with proper types. In the case of the functionality-centric
approach, the information is represented as data with proper types. The difference has
substantial implications. In the case of the register-centric approach, the user must decide
ahead on the data placement within registers. For example, in listing 54, S1, S2, and S3
are placed in 3 separate registers. However, as S1, S2, and S3 are read-only, and their total
width is less than 32 bits, they could also be placed in one or two registers. Moreover, they
can be placed in the registers with C1, C2, and C3 or in a separate register. Even with just
6 data, there are numerous possible placements. In the case of the functionality-centric
approach, the compiler is responsible for the data placement within the registers, which
reduces development time.

Table 8.1 presents registerification results for single control and status data generated by
the functionality-centric FBDL compiler. As can be seen, S2 has been placed in the same
register as C2, and S3 has been placed in the same register as C3. The compiler has done
this automatically to minimize the required address space. S1 has been placed in the
same register as the Version, which is static data (data that is never modified). C1 has
been placed in a separate register with address 6, and this is the only data placed in this
register.
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Data Address Bit range
C1 6 6 : 0
C2 5 8 : 0
C3 4 11 : 0
S1 8 30 : 24
S2 5 17 : 9
S3 4 23 : 12

Mask 7 15 : 0
Version 8 23 : 0

Table 8.1: Registerification results for single control and status data.

Now, let us consider what happens if the system requirements change and the user needs
to change the width of some data. For example, both C3 and S3 shall now be 2 bits wide.
In the case of the register-centric approach, the user must manually adjust the register
layout. Depending on the scale of the change, it may be required to reshuffle the bit
fields between registers. In the case of a width increase, the data might no longer fit the
register width, and the user must manually define additional registers. In the case of a
width decrease, the data will still fit the registers. However, the generated address space
size might no longer be optimal. In the case of the functionality-centric approach, the
data is automatically placed within the registers by the compiler, so the only change the
user must introduce is the change of the value of the width property. Such an approach
improves systems maintainability.

Table 8.2 shows registerification results generated by the FBDL compiler after changing
the C3 and S3 width to 2. C2, S2, and S3 are now placed in the same register. Some
addresses are changed because the compiler has found a better register layout. The whole
recompilation process takes milliseconds as it is done automatically by the computer
application. Doing the same manually by the user would take seconds or even minutes
for more complex adjustments.
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Data Address Bit range
C1 5 6 : 0
C2 4 8 : 0
C3 6 1 : 0
S1 8 30 : 24
S2 4 17 : 9
S3 4 19 : 18

Mask 7 15 : 0
Version 8 23 : 0

Table 8.2: Registerification results for single control and status data after the C3 and S3
width change.

Listing 58 presents the VHDL description generated for C1 access by the register-centric
AGWB, and listing 59 presents the VHDL description generated for C1 access by the
functionality-centric FBDL. The difference is minor and irrelevant. The snippets are
syntactically different mainly because of the custom types used by the AGWB. The access
address also differs because AGWB and FBDL assign addresses to registers in different
order. The description has the same semantics because the C1 width is less than the data
bus width. However, the access description generated for the gateware/hardware and
the access code generated for the firmware/software has significant differences between
register-centric and functionality-centric approaches when the data is an array, when the
data is wider than the data bus or when the data forms broader context, what is presented
in the corresponding subsections 8.1.2, 8.1.3 and 8.1.4.

if int_addr = std_logic_vector(to_unsigned(2, 5)) then
int_regs_wb_m_i.dat <= (others => '0');
int_regs_wb_m_i.dat(6 downto 0) <= std_logic_vector(int_C1_o);

if int_regs_wb_m_o.we = '1' then
int_C1_o <= std_logic_vector(int_regs_wb_m_o.dat(6 downto 0));

end if;

int_regs_wb_m_i.ack <= '1';
int_regs_wb_m_i.err <= '0';

end if;

Listing 58: C1 VHDL access description generated by the register-centric AGWB.
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if 6 <= addr and addr <= 6 then
if master_out.we = '1' then

C1_o <= master_out.dat(6 downto 0);
end if;

master_in.dat(6 downto 0) <= C1_o;
master_in.ack <= '1';
master_in.err <= '0';

end if;

Listing 59: C1 VHDL access description generated by the functionality-centric FBDL.

Listing 60 presents Python code for accessing the single data in the register-centric ap-
proach, and listing 61 presents Python code for accessing the single data in the
functionality-centric approach. Within testbenches, C1, C2, and C3 are connected directly
to S1, S2, and S3 to form a feedback loop in the hardware description. There is almost
no difference in the software access code, except classes generated by the FBDL have
additional attributes with the data width. However, the access code generated for the
firmware/software significantly differs between register-centric and functionality-centric
approaches when the data is wider than the data bus, which is presented in subsection
8.1.3.

def single_data_test(Main):
print("Performing Single Data Test")

r = randint(0, 2 ** 7 - 1)
Main.C1.write(r)
assert Main.C1.read() == r
assert Main.S1.read() == r

r = randint(0, 2 ** 9 - 1)
Main.C2.write(r)
assert Main.C2.read() == r
assert Main.S2.read() == r

r = randint(0, 2 ** 12 - 1)
Main.C3.write(r)
assert Main.C3.read() == r
assert Main.S3.read() == r

print("Single Data Test Passed")

Listing 60: Python code for testing access to single data in the register-centric AGWB.
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def single_data_test(Main):
print("Performing Single Data Test")

r = randint(0, 2 ** Main.C1.width - 1)
Main.C1.write(r)
assert Main.C1.read() == r
assert Main.S1.read() == r

r = randint(0, 2 ** Main.C2.width - 1)
Main.C2.write(r)
assert Main.C2.read() == r
assert Main.S2.read() == r

r = randint(0, 2 ** Main.C3.width - 1)
Main.C3.write(r)
assert Main.C3.read() == r
assert Main.S3.read() == r

print("Single Data Test Passed")

Listing 61: Python code for testing access to single data in the functionality-centric FBDL.

8.1.2 Automatic array handling (MRT)
In listing 55, CA denotes an array of control data, and SA denotes an array of status data.
Listing 54 represents the same data as CA4, CA2, SA4, and SA2 registers. Within testbench
designs, the CA array is connected directly to the SA array to form a feedback loop in the
hardware description.

The first difference is that in the register-centric approach, the user must manually lay
out an array data in the registers. In the case of the functionality-centric approach, it
is the compiler’s responsibility. The same difference was presented in the section 8.1.1
for single data. However, the manual placement task is even more time-consuming in the
case of array data. Depending on the data width and item count, the array might be
represented as a replication of a single register or require an extra register containing a
different number of items. The latter is in the example description, where 10 items of
width 8 are placed within 3 registers with 4, 4, and 2 distribution. Moreover, not all
register-centric tools allow bit field replication within a register. The user must define
each bit field separately within the register. For example, in the case of 32 elements array
with 1-bit data width, the user must explicitly define 32 bit fields.

The second important distinction between the register-centric and functionality-centric
approaches regarding array handling is the generated firmware/software access code. List-
ing 62 presents Python code for accessing the array data in the register-centric approach,
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and listing 63 presents Python code for accessing the array data in the functionality-
centric approach. In the register-centric approach, the user must know the relationship
between the data index and register and the bit field index. In other words, if the user
wants to access data with index D, he must explicitly code access to register with index
R and bit field with index F. In the case of the functionality-centric approach, the user
operates on the array data, and all the index mapping is handled automatically by the
code generated by the compiler. Instead of implicitly handling three indexes D, R, and F,
the user only has to handle the D index.

def array_test(Main):
print("Performing Array Test")

data = []
for _ in range(10):

data.append(randint(0, 2 ** 8 - 1))

for i in range(len(Main.CA4)):
Main.CA4[i].Item0.write(data[0 + i * 4])
Main.CA4[i].Item1.write(data[1 + i * 4])
Main.CA4[i].Item2.write(data[2 + i * 4])
Main.CA4[i].Item3.write(data[3 + i * 4])

Main.CA2.Item0.write(data[8])
Main.CA2.Item1.write(data[9])

rdata = []
for i in range(len(Main.CA4)):

rdata.append(Main.CA4[i].Item0.read())
rdata.append(Main.CA4[i].Item1.read())
rdata.append(Main.CA4[i].Item2.read())
rdata.append(Main.CA4[i].Item3.read())

rdata.append(Main.CA2.Item0.read())
rdata.append(Main.CA2.Item1.read())
assert rdata == data, f"got {rdata}, want {data}"

rdata = []
for i in range(len(Main.SA4)):

rdata.append(Main.SA4[i].Item0.read())
rdata.append(Main.SA4[i].Item1.read())
rdata.append(Main.SA4[i].Item2.read())
rdata.append(Main.SA4[i].Item3.read())

rdata.append(Main.SA2.Item0.read())
rdata.append(Main.SA2.Item1.read())
assert rdata == data, f"got {rdata}, want {data}"

print("Array Test Passed")

Listing 62: Python code for testing access to array data in the register-centric AGWB.
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def array_test(Main):
print("Performing Array Test")

data = []
for _ in range(len(Main.CA)):

data.append(randint(0, 2 ** Main.CA.width - 1))
Main.CA.write(data)

rdata = Main.CA.read()
assert rdata == data, f"got {rdata}, want {data}"

rdata = Main.SA.read()
assert rdata == data, f"got {rdata}, want {data}"

print("Array Test Passed")

Listing 63: Python code for testing access to array data in the functionality-centric FBDL.

The FBDL compiler is able to handle arrays with a single element of any width. Listing
64 presents the VHDL access description generated for the CA array. As can be seen,
4 elements are placed in the register with address 1, another 4 elements are placed in
the register with address 2, and the remaining 2 are placed in the register with address
3.

if 1 <= addr and addr <= 2 then
for i in 0 to 3 loop

if master_out.we = '1' then
CA_o((addr-1)*4+i) <= master_out.dat(8*(i+1) + 0-1 downto 8*i + 0);

end if;
master_in.dat(8*(i+1) + 0-1 downto 8*i + 0) <= CA_o((addr-1)*4+i);

end loop;

master_in.ack <= '1';
master_in.err <= '0';

end if;

if 3 <= addr and addr <= 3 then
for i in 0 to 1 loop

if master_out.we = '1' then
CA_o(8+i) <= master_out.dat(8*(i+1) + 0-1 downto 8*i+0);

end if;
master_in.dat(8*(i+1) + 0-1 downto 8*i+0) <= CA_o(8+i);

end loop;

master_in.ack <= '1';
master_in.err <= '0';

end if;

Listing 64: CA (size = 10, width = 8) array VHDL access description generated by the
FBDL compiler.
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Let us suppose that system requirements have changed, and CA shall now be an array of
30 elements with a width equal to 1 bit. Listing 65 presents the adjustment that has to
be applied to the bus description, and listing 66 presents the VHDL access description
generated for the new CA declaration. As can be seen, all the elements are now placed
within a single register with address 1.

diff --git a/fbd/bus.fbd b/fbd/bus.fbd
index 3cdd74e..0a13424 100644
--- a/fbd/bus.fbd
+++ b/fbd/bus.fbd
@@ -7,7 +7,7 @@ Main bus

S2 status; width = 9
S3 status; width = 12

- CA [10]config; width = 8
+ CA [30]config; width = 1

SA [10]status; width = 8

Listing 65: Functional bus description diff for CA size change to 30 and width change to
1.

if 1 <= addr and addr <= 1 then
for i in 0 to 29 loop

if master_out.we = '1' then
CA_o(i) <= master_out.dat(1*(i+1)+0-1 downto 1*i+0);

end if;
master_in.dat(1*(i+1)+0-1 downto 1*i+0) <= CA_o(i);

end loop;

master_in.ack <= '1';
master_in.err <= '0';

end if;

Listing 66: CA (size = 30, width = 1) array VHDL access description generated by the
FBDL compiler.

Let us suppose that system requirements have changed once more, and CA shall now be an
array of 6 elements with a width equal to 21 bits. Listing 67 presents the adjustment that
has to be applied to the bus description. Listing 68 presents the VHDL access description
generated for the new CA definition. As can be seen, each item is now placed in a separate
register and spans bits from 0 to 20. The first array register has address 1, and the last
one has address 6.
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diff --git a/fbd/bus.fbd b/fbd/bus.fbd
index 3cdd74e..0a13424 100644
--- a/fbd/bus.fbd
+++ b/fbd/bus.fbd
@@ -7,7 +7,7 @@ Main bus

S2 status; width = 9
S3 status; width = 12

- CA [30]config; width = 1
+ CA [6]config; width = 21

SA [10]status; width = 8

Listing 67: Functional bus description diff for CA size change to 6 and width change to
21.

if 1 <= addr and addr <= 6 then
if master_out.we = '1' then

CA_o(addr - 1) <= master_out.dat(20 downto 0);
end if;
master_in.dat(20 downto 0) <= CA_o(addr - 1);

master_in.ack <= '1';
master_in.err <= '0';

end if;

Listing 68: CA (size = 6, width = 21) array VHDL access description generated by the
functionality-centric FBDL.

The FBDL compiler is also capable of handling access to arrays with elements wider than
the data bus. Such an example is not presented as access atomicity is described in detail
in subsection 8.1.3.

8.1.3 Access atomicity (MST)
In the example design, the Counter represents status data that is wider than the bus
width. In the functionality-centric approach, each instantiated functionality has a bit
width independent of the data bus width. In register-centric approaches (CII being the
exception), the designer explicitly puts data into the registers. Hence, it cannot be defined
as wider than the data bus width. For the data wider than the register width, the user
must define multiple registers and partition the data into the registers. However, when
the access to the data must be atomic, two additional issues arise:

1. Atomic data value change must be manually described in the HDL (vhdMMIO is
the exception as it has the concept of logical registers and is capable of generating
atomic access hardware description).

2. Correct access order to the registers must be manually implemented in the firmware/-
software. The data is latched on reading the first register in the case of data reads
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and updated on writing the last register in the case of data writes. Incorrect access
order results in an invalid value if data changes during the transaction.

In the functionality-centric approach, the compiler automatically handles the additional
issues related to access atomicity, as data is treated as an indivisible whole, not as a
fragmented piece.

Figure 8.3 presents waveforms, and listing 69 presents the generated VHDL description
for Counter access in the register-centric approach. Counter registers sampling times are
marked with markers. During the first register read, the counter value equals 0x1FFFFFFFF
, and the value on the data bus equals 0xFFFFFFFF. This is the expected value. Before
the second read, the counter overflows. During the second read, the counter value equals
0x000000004, and the value on the data bus equals 0x00000000. The read value of the
bit with index 33 is incorrect because during the first read, it equaled '1', but it equaled
'0' during the second read. The final Counter read value equals 0x0FFFFFFFF, instead of
0x1FFFFFFFF. This is two times less than expected. The problem occurs not only when
values overflow but also when there is a change in the middle bits of a signal wider than
the data bus. For example, if the Counter were 65 bits wide, the same problem with bit
33 would occur even though the Counter did not overflow.

Figure 8.3: Counter non-atomic access issues in the register-centric approach.
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if int_addr = std_logic_vector(to_unsigned(14 + i, 5)) then
int_regs_wb_m_i.dat <= (others => '0');
int_regs_wb_m_i.dat(31 downto 0) <= std_logic_vector(Counter0_i);
int_regs_wb_m_i.ack <= '1';
int_regs_wb_m_i.err <= '0';

end if;
if int_addr = std_logic_vector(to_unsigned(15 + i, 5)) then
int_regs_wb_m_i.dat <= (others => '0');
int_regs_wb_m_i.dat(0 downto 0) <= std_logic_vector(Counter1_i);
int_regs_wb_m_i.ack <= '1';
int_regs_wb_m_i.err <= '0';

end if;

Listing 69: Counter VHDL access description generated by the register-centric AGWB.

Figure 8.4 presents waveforms, and listing 70 presents the generated VHDL description
for the Counter access in the functionality-centric approach. Counter registers sampling
times are marked with markers. During the first register read, the counter value equals
0x1FFFFFFFF, and the value on the data bus equals 0xFFFFFFFF. This is the expected
value. Before the second read, the counter overflows. During the second read, the counter
value equals 0x000000005. However, the value on the data bus equals 0x00000001. The
read value of the bit with index 33 equals '1' because this was the bit value when the first
register read occurred. Compared to the register-centric approach, in the functionality-
centric approach, the user is provided with the data, not the registers, and it is the
compiler’s responsibility to guarantee atomic data access.

The generated VHDL access description has an additional Counter_atomic signal latching
the value of the remaining Counter bits when the read of the first register storing the
Counter value happens. Such a register is often called a snapshot or shadow register,
although, to the author’s knowledge, there is no formal definition. When reading the upper
bit, the data bus is driven from the snapshot register, not the Counter register.

Figure 8.4: Counter atomic access in the functionality-centric approach.
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-- Signal declaratin line taken from the architecture declarative part.
signal Counter_atomic : std_logic_vector(32 downto 32);
-- If statements taken from the process statement part.
if 12 <= addr and addr <= 12 then
Counter_atomic(32 downto 32) <= Counter_i(32 downto 32);
master_in.dat(31 downto 0) <= Counter_i(31 downto 0);
master_in.ack <= '1';
master_in.err <= '0';

end if;
if 13 <= addr and addr <= 13 then
master_in.dat(0 downto 0) <= Counter_atomic(32 downto 32);
master_in.ack <= '1';
master_in.err <= '0';

end if;

Listing 70: Counter VHDL access description generated by the FBDL compiler.

In the register-centric approach, the user can provide access atomicity similarly. However,
it must be done manually outside the automatically generated bus fabric description. This
requires extra time and introduces room for potential mistakes, for example, when the
user accidentally connects the wrong bits to the snapshot register. It is also required
that the first read register has an associated read acknowledgment signal that triggers the
snapshot register data latch.

Providing access atomicity consumes extra resources, and not all data wider than the
data bus requires atomic access. In such a case, the FBDL compiler can be informed to
discard access atomicity for particular data. The user can simply set the atomic property
to false (atomic = false).

Listing 71 presents Python code for accessing Counter in the register-centric approach,
and listing 72 presents Python code for accessing Counter in the
functionality-centric approach. In the case of the register-centric approach, the user must
manually implement a valid access order and recreate the value. For the example Counter
, there are at least three possible mistakes: invalid register access order, invalid bit shift,
and invalid order of arguments for the bitwise or operator (|). In the functionality-centric
approach, the user simply reads the data. Everything related to the data read is handled
automatically by the compiler.

print("Performing Counter Test")
cnt0 = Main.Counter0.read()
cnt1 = Main.Counter1.read()
cnt = (cnt1 << 32) | cnt0
assert cnt == 0x1FFFFFFFF
print("Counter Test Passed")

Listing 71: Python code for testing Counter access in the register-centric AGWB.
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print("Performing Counter Test")
cnt = Main.Counter.read()
assert cnt == 0x1FFFFFFFF
print("Counter Test Passed")

Listing 72: Python code for testing Counter access in the functionality-centric FBDL.

8.1.4 Procedure and stream contexts (MRS)
In listing 54, registers Add0, Add1, and Sum represent a procedure. The procedure is a
simple addition procedure with three summands: A, B, and C. The Sum register stores the
operation result.

Describing procedures in the register-centric approach has the following drawbacks:

1. The user must manually place the parameter and return data in the registers. In
the case of procedure data, atomic access is not required as all the argument data is
latched using an additional strobe signal. Usually, the strobe pulse is generated when
the last register storing procedures argument is written. No atomicity requirement
means the argument data can be packed tightly in the registers to minimize the
required address space. The bits of the single data can be split into two registers
even if the data width is less than the data bus width. In the case of listing 54,
2 bits of C could be placed in the register Add0, and only the remaining 6 bits
could be placed in the register Add1. This would not change the number of required
registers in the example addition procedure. However, such an approach can reduce
the number of required registers in the case of procedures with more parameters.
Moreover, if there is enough space in the parameters’ last register, the return data
can be placed there. However, not all register-centric tools allow placing control and
status data in the same register. In the case of procedure data change, the register-
centric approach might require manual and time-consuming data reshuffling between
registers.

2. Without additional comment, a user can only guess based on the register names
that particular registers form a procedure context. Even with the comment, it may
not be up to date, as it must be manually synced.

3. The user must provide correct parameter registers write order and return registers
read order in firmware/software.

Listing 73 presents the interface of the VHDL Subblock entity generated by the register-
centric AGWB. The user is provided with the addition procedure registers directly. There
is no encapsulation of the procedure context.
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entity Subblock_t is
port (

rst_n_i : in std_logic;
clk_sys_i : in std_logic;

slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;

Add0_o : out t_Add0;
Add1_o : out t_Add1;
Add1_o_stb : out std_logic;
Sum_i : in t_Sum;

Add_Stream0_o : out t_Add_Stream0;
Add_Stream1_o : out t_Add_Stream1;
Add_Stream1_o_stb : out std_logic;

Sum_Stream_i : in t_Sum_Stream;
Sum_Stream_i_ack : out std_logic

);
end Subblock_t;

Listing 73: Interface of the VHDL Subblock entity generated by the AGWB.

Listing 74 presents Python code for testing the addition procedure in the register-centric
approach in the co-simulation testbench. The A and B bit fields are written separately,
meaning the register Add0 is written twice. This can be avoided. However, it is the user’s
responsibility to create a valid value for the Add0 register write. The single Add0 write
approach line is commented out.

def add_test(Main):
print("Performing Add Test")

a = randint(0, 2 ** 20 - 1)
b = randint(0, 2 ** 10 - 1)
c = randint(0, 2 ** 8 - 1)

Main.Subblock.Add0.A.write(a)
Main.Subblock.Add0.B.write(b)
# Main.Subblock.Add0.write((b << 20) | a)
Main.Subblock.Add1.C.write(c)
assert Main.Subblock.Sum.read() == a + b + c

print("Add Test Passed")

Listing 74: Python code for testing addition procedure in the register-centric approach.

The same addition procedure is presented in the listing 55. The functionality-centric
procedure description is free of all the register-centric drawbacks. This is because the
procedure context is defined explicitly using the proc functionality. Parameters and
returns have their widths, but it is the compiler’s responsibility to place them in registers.
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The compiler is also responsible for generating the firmware/software method for calling
the procedure, so there is no room for the incorrect access order mistake.

Listing 75 presents the interface of the VHDL Subblock entity generated by the
functionality-centric FBDL. The procedure-related signals are encapsulated as record
types. The call signal is driven high for one clock cycle every time the last parame-
ter register is written. The exitt (‘exit’ is VHDL keyword) signal is driven high for one
clock cycle every time the last return register is read. In the example system, the exitt
signal is ignored, and the call signal is used to trigger the add procedure. The Sum is
updated every time the call signal equals '1'.

-- Record type declarations taken from the Subblock_pkg.
type Add_out_t is record

A : std_logic_vector(19 downto 0);
B : std_logic_vector(9 downto 0);
C : std_logic_vector(7 downto 0);
call : std_logic;
exitt : std_logic;

end record;
type Add_in_t is record Sum : std_logic_vector(20 downto 0); end record;
type Add_Stream_t is record

A : std_logic_vector(19 downto 0);
B : std_logic_vector(9 downto 0);
C : std_logic_vector(7 downto 0);

end record;
type Sum_Stream_t is record Sum : std_logic_vector(20 downto 0); end record;

entity Subblock is
port (

clk_i : in std_logic;
rst_i : in std_logic;

slave_i : in t_wishbone_slave_in_array (1 - 1 downto 0);
slave_o : out t_wishbone_slave_out_array(1 - 1 downto 0);

Add_o : out Add_out_t;
Add_i : in Add_in_t;

Add_Stream_o : out Add_Stream_t;
Add_Stream_stb_o : out std_logic;

Sum_Stream_i : in Sum_Stream_t;
Sum_Stream_stb_o : out std_logic

);
end entity;

Listing 75: Interface of the VHDL Subblock entity generated by the FBDL.
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Listing 76 presents Python code for testing the addition procedure in the co-simulation
testbench. In the functionality-centric approach, a user is provided with a function that
can be explicitly called. There is no need to write parameter registers manually to call
the procedure.
def add_test(Main):

print("Performing Add Test")
a = randint(0, 2 ** 20 - 1)
b = randint(0, 2 ** 10 - 1)
c = randint(0, 2 ** 8 - 1)
assert Main.Subblock.Add(a, b, c)[0] == a + b + c
print("Add Test Passed")

Listing 76: Python code for testing add procedure in the functionality-centric approach.

Listing 77 presents the add procedure access description generated by the functionality-
centric FBDL. The address signal (addr) is a relative subblock address, hence low address
values such as 0 and 1. The compiler automatically put the lower 2 bits of the C parameter
in the same register as the A and B parameters. The compiler also put the return Sum in
the same register as the upper 6 bits of the C parameter. Figure 8.5 presents waveforms for
the add procedure test. There are 3 bus transactions, 2 writes, and 1 read. The second
write access has the same address as the read access. Yellow waveforms have decimal
formatting. The result of the procedure is correct (1045694 + 484 + 117 = 1046295). It
also may be noticed that the value of the C parameter changes twice on both writes.
if 0 <= addr and addr <= 0 then

if master_out.we = '1' then
Add_o.A <= master_out.dat(19 downto 0);

end if;
master_in.dat(19 downto 0) <= Add_o.A;
if master_out.we = '1' then

Add_o.B <= master_out.dat(29 downto 20);
end if;
master_in.dat(29 downto 20) <= Add_o.B;
if master_out.we = '1' then

Add_o.C(1 downto 0) <= master_out.dat(31 downto 30);
end if;
master_in.dat(31 downto 30) <= Add_o.C(1 downto 0);
master_in.ack <= '1';
master_in.err <= '0';

end if;
if 1 <= addr and addr <= 1 then

if master_out.we = '1' then
Add_o.C(7 downto 2) <= master_out.dat(5 downto 0);

end if;
master_in.dat(5 downto 0) <= Add_o.C(7 downto 2);
master_in.dat(26 downto 6) <= Add_i.Sum;
master_in.ack <= '1';
master_in.err <= '0';

end if;

Listing 77: Add procedure access description generated by the functionality-centric FBDL.
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Figure 8.5: Add procedure waveforms for testbench utilizing description generated by the
FBDL compiler.

In a practical design, registers often form not only procedure contexts but also stream
contexts. A stream is very similar to a procedure. The first difference is that a stream
is always unidirectional. It always has only parameters (downstream) or only returns
(upstream). The second difference is in the way firmware/software calls a stream. An
access to a stream is multiple, and an access to a procedure is single. The example de-
sign contains two streams Add_Stream downstream and Sum_Stream upstream. While
the gateware/hardware description generated for streams is almost identical to the de-
scription generated for procedures, the generated firmware/software code has different
API. Listing 78 presents Python code for testing addition streams in the co-simulation
testbench. The first noticeable difference is that streams accept or return an array of
datasets, whereas procedures accept and return a single dataset. The second difference is
purely nomenclatural. Streams instead of being called, are written (downstream) or read
(upstream).
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def streams_test(Main):
print("Performing Streams Test")

data = []
for i in range(16):

dataset = []
dataset.append(randint(0, 2**Main.Subblock.Add_Stream.params[0]['Width']-1))
dataset.append(randint(0, 2**Main.Subblock.Add_Stream.params[1]['Width']-1))
dataset.append(randint(0, 2**Main.Subblock.Add_Stream.params[2]['Width']-1))
data.append(dataset)

Main.Subblock.Add_Stream.write(data)

sums = Main.Subblock.Sum_Stream.read(16)
for i, dataset in enumerate(data):

got = sums[i][0]
want = sum(dataset)
assert got == want, f"{i}: got {got}, want {want}"

print("Streams Test Passed")

Listing 78: Python code for testing addition streams in the functionality-centric approach.

The procedure and streams examples are contained within the subblock, both in the
register-centric AGWB and functionality-centric FBDL approach. The goal is to present
that in both approaches, describing the hierarchy of the modules is possible and is very
similar and straightforward. The block functionality also allows defining the number of
masters connected to the subblock via the masters property, which allows for connecting
multiple bus or physical interfaces. The additional interfaces can be connected directly
or via a custom bridge if a protocol translation is required.

8.1.5 Additional types (R)
In the register-centric approach, a user declares the register type. Most available tools
offer control registers and status registers. A control register can be read and written from
the firmware/software and read (sometimes also written) from the gateware/hardware. A
status register can be read from the firmware/software, and read and written from the
gateware/hardware. vhdMMIO is slightly different in this term as it has the concept of
register behavior. The register behavior is an extension of the register type. However,
this is still the register type, not the data type.

In the functionality-centric approach offered by the FBDL, a user declares the type of the
data, not the register. This, in turn, allows for introducing additional types, increasing
the amount of code that can be automatically generated, and improving the system’s
readability.
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In listing 54, there is a control register named Mask and a status register named Version.
The Mask is a bit mask, meaning the user will want to set, clear, and toggle particular bits
of the value. The Version represents static information that never changes. However,
in the register-centric approach, the user can only guess based on the names that Mask
is a bit mask and Version is static. The description could have extra documentation
comments explaining the purpose of the registers, but it would have to be manually kept
up to date.

In listing 55, the same Mask and Version have distinct types. Based on the type, it is
not only clear what functionality is served by the data, but it is also possible to generate
access functions for firmware/software with the desired programming interface. In the
case of the static Version, it is also possible to assign a value where the static data is
defined, which improves readability. In most register-centric tools, the user has to check
the gateware/hardware description to realize that the status register value never changes
because it is driven by a constant signal. This is shown in listing 79, which presents an
instantiation of the Main entity generated by the register-centric AGWB.

agwb_main : entity agwb.Main
port map (
clk_sys_i => clk,
rst_n_i => '1',
slave_i => wb_ms,
slave_o => wb_sm,
Subblock_wb_m_o => subblock_wb_ms,
Subblock_wb_m_i => subblock_wb_sm,

C1_o => c1,
C2_o => c2,
C3_o => c3,

S1_i => c1,
S2_i => c2,
S3_i => c3,

CA4_o => ca4,
CA2_o => ca2,

SA4_i => sa4,
SA2_i => sa2,

Counter0_i => std_logic_vector(counter(31 downto 0)),
Counter1_i => std_logic_vector(counter(32 downto 32)),

Mask_o => mask,
Version_i => x"010102"

);

Listing 79: Instantiation of the VHDL Main entity generated by the register-centric
AGWB.
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Listing 80 presents Python code for testing access to the Mask data in the register-centric
AGWB co-simulation testbench, and listing 81 presents Python code for the same test
in the functionality-centric FBDL approach. In the case of the FBDL, it is possible
to generate access methods operating directly on bits, which saves time and reduces
the probability of human mistakes. In the case of the register-centric approach, it is
impossible, as the compiler does not know the purpose of the data stored in the control
register.

def mask_test(Main):
print("Performing Mask Test")
# Setting particular bits
bits = [1, 3, 8, 15]
mask = 0
for b in bits:

mask |= 1 << b
Main.Mask.write(mask)
for idx in range(16):

val = mask & (1 << idx)
if idx in bits:

assert val == 1 << idx, f"bit {idx} not set"
else:

assert val == 0, f"bit {idx} set"
# Toggling bits
mask = Main.Mask.read()
mask ^= (1 << 1)
Main.Mask.write(mask)
assert Main.Mask.read() & (1 << 1) == 0, "mask toggle didn't work"
print("Mask Test Passed")

Listing 80: Python code for testing access to Mask data in the register-centric approach.

def mask_test(Main):
print("Performing Mask Test")
bits = [1, 3, 8, 15]
Main.Mask.set(bits)
mask = Main.Mask.read()
for idx in range(Main.Mask.width):

val = mask & (1 << idx)
if idx in bits:

assert val == 1 << idx, f"bit {idx} not set"
else:

assert val == 0, f"bit {idx} set"
Main.Mask.toggle(1)
assert Main.Mask.read() & (1 << 1) == 0, "mask toggle didn't work"
print("Mask Test Passed")

Listing 81: Python code for testing access to Mask data in the functionality-centric FBDL.
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8.2 Synthesis results
Hardware descriptions generated by the register-centric AGWB and the functionality-
centric FBDL were synthesized to compare resource utilization and show that the
functionality-centric approach is not only a theoretical concept but also something that
works in practice.

A few adjustments have to be introduced to the logical design from figure 8.2 to make the
example design work with real hardware. Namely, the co-simulation-specific elements (the
pink ones) must be replaced with counterparts corresponding to the physical connection.
The BFM was replaced with a custom SPI - Wishbone bridge, and GHDL simulator was
replaced with the Cmod S7 development board [106]. FIFOs were replaced with physical
cables and USB-SPI converter [107]. Python co-simulation interface was replaced with a
custom interface implementation utilizing busio module from the Adafruit Blinka package
[108]. It is worth mentioning that regardless of the run environment (co-simulation or
actual hardware), elements generated by the FBDL compiler (the yellow ones) are the
same. There is no need to regenerate files.

Vivado 2021.2 was used as the synthesis tool. The Synthesis Strategy was set to the
Default, and the -flatten_hierarchy property was set to none. The target part was
XC7S25-1CSGA225C (Spartan 7).

Figures 8.6 and 8.7 present post-synthesis resource utilization for the register-centric
AGWB and functionality-centric FBDL. Table 8.3 presents the same information but
in a more straightforward comparison format.

The number of utilized registers is the same for AGWB and FBDL. This is expected
as the number of required registers depends on the total number of data bits, and both
approaches describe the same data but use different approaches. The number of utilized
registers is higher than the number of data bits because some registers are utilized for the
bus logic. However, as the same bus and VHDL library are used in both examples, the
number of registers utilized by the bus logic is the same.

The number of utilized LUTs is higher for the register-centric AGWB. In the case of the
functionality-centric FBDL, the compiler automatically optimized the required address
space size, resulting in simpler address decoding logic. The description generated by the
register-centric AGWB effectively utilizes 22 addresses, and the description generated by
the functionality-centric FBDL effectively utilizes 19 addresses.
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Figure 8.6: Post-synthesis resource utilization for the register-centric AGWB.

Figure 8.7: Post-synthesis resource utilization for the functionality-centric FBDL.

Main Subblock

LUTs
AGWB 202 95
FBDL 150 71

Registers
AGWB 162 113
FBDL 162 113

Table 8.3: Post-synthesis resource utilization.
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9 Real use case
The implemented FBDL compiler was used during the development of the delay generator
module for femtosecond laser implemented as a part of the “Development of optical engine
for rapid laser fabrication of transparent materials” (Eurostars-2) project carried out by
the Fluence SP. Z O. O. The objective of the project was the development of a beam
delivery module containing an optical Pancharatnam-Berry phase element and a laser
equipped with precise pulse-on-demand synchronization for high-speed laser processing of
transparent materials.

Due to the proprietary nature of the project, no internal details can be revealed. However,
appendix G contains the statement from the Fluence company confirming the use of the
FBDL compiler.
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10 Summary
Describing system bus registers at the functional level using FBDL offers the following
advantages in certain practical use cases compared to the typical register-centric ap-
proach:

1. Shorter development time, as more code can be automatically generated.

2. More readable and maintainable project structure. As FBDL is more strongly typed
than the typical register-centric approach, the description contains more information
about the system. There is no need to read gateware/hardware description or
firmware/software code to know that particular registers form a broader context
and are dependent (procedures and streams).

3. No space for invalid access order bugs. Code for writing parameters or reading
returns of procedures and streams is automatically generated so the register with
the associated strobe or acknowledgment signal is always accessed as the last.

4. Less probability of non-atomic data access bugs. In FBDL, access to any data
is atomic by default. Any compiler compilant with the FBDL specification must
guarantee that the generated gateware or hardware provides atomic data access by
default. Non-atomicity is an opt-out feature achieved with explicit atomic = false
property assignment.

5. Uniform data access interface across different target languages. The FBDL specifi-
cation states what kind of accesses must be generated for particular functionalities.
This eliminates scenarios where the generated C code provides information on ad-
dresses, masks, and shifts. However, for example, the generated Python or C++
code abstracts this information by providing direct operations on registers and bit
fields. The abstraction level of the code generated by the FBDL compiler is the
same regardless of the target language and is always at the data functionality level.

The FBDL may also be used for on-chip connections utilizing the NoC technology. As each
network node has to distribute data within its borders, the traditional bus architectures
are still used for this purpose. In such a design, the FBDL may be used to describe the
functionality of particular buses of nodes. The routing algorithm and access interfaces
are then implemented independently and are only hooked to the code generated by an
FBDL compiler.
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A Supervisor registerification results
Functionality addresses are relative addresses. Absolute addresses are obtained by adding
block start address.

1 {
2 "Name": "Main",
3 "Doc": "",
4 "IsArray": false,
5 "Count": 1,
6 "Masters": 1,
7 "Reset": "",
8 "Width": 32,
9 "Sizes": { "BlockAligned": 32, "Compact": 10, "Own": 1 },

10 "AddrSpace": { "Start": 0, "End": 31 },
11 "BoolConsts": null,
12 "BoolListConsts": null,
13 "FloatConsts": null,
14 "IntConsts": null,
15 "IntListConsts": null,
16 "StrConsts": null,
17 "Blackboxes": null,
18 "Configs": null,
19 "Irqs": null,
20 "Masks": null,
21 "Memories": null,
22 "Procs": null,
23 "Statics": [
24 {
25 "Name": "ID",
26 "Doc": "Bus identifier.",
27 "IsArray": false,
28 "Count": 1,
29 "Groups": null,
30 "InitValue": "x\"39a90380\"",
31 "ReadValue": "",
32 "ResetValue": "",
33 "Width": 32,
34 "Access": { "Strategy": "Single", "Addr": 0, "StartBit": 0, "EndBit": 31 }
35 }
36 ],
37 "Statuses": null,
38 "Streams": null,
39 "Subblocks": [
40 {
41 "Name": "Supervisor",
42 "Doc": "",
43 "IsArray": false,
44 "Count": 1,
45 "Masters": 1,
46 "Reset": "",
47 "Width": 32,
48 "Sizes": { "BlockAligned": 16, "Compact": 9, "Own": 9 },
49 "AddrSpace": { "Start": 16, "End": 31 },
50 "BoolConsts": null,
51 "BoolListConsts": null,
52 "FloatConsts": null,
53 "IntConsts": { "WORKER_COUNT": 24 },
54 "IntListConsts": null,
55 "StrConsts": null,
56 "Blackboxes": null,
57 "Configs": null,
58 "Irqs": null,
59 "Masks": [
60 {
61 "Name": "Workers_Mask",
62 "Doc": "",
63 "IsArray": false,
64 "Count": 1,
65 "Atomic": true,
66 "Groups": null,
67 "InitValue": "",
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68 "ReadValue": "",
69 "ResetValue": "",
70 "Width": 24,
71 "Access": { "Strategy": "Single", "Addr": 5, "StartBit": 0, "EndBit": 23 }
72 }
73 ],
74 "Memories": null,
75 "Procs": [
76 {
77 "Name": "Reset_Counter",
78 "Doc": "",
79 "IsArray": false,
80 "Count": 1,
81 "Delay": null,
82 "Params": null,
83 "Returns": null,
84 "CallAddr": 0,
85 "ExitAddr": null
86 },
87 {
88 "Name": "Program",
89 "Doc": "",
90 "IsArray": false,
91 "Count": 1,
92 "Delay": null,
93 "Params": [
94 {
95 "Name": "counter_value",
96 "Doc": "",
97 "IsArray": false,
98 "Count": 1,
99 "Groups": null,

100 "Range": null,
101 "Width": 48,
102 "Access": {
103 "Strategy": "Continuous",
104 "RegCount": 2, "StartAddr": 1, "StartBit": 0, "EndBit": 15
105 }
106 },
107 {
108 "Name": "worker_data",
109 "Doc": "",
110 "IsArray": true,
111 "Count": 2,
112 "Groups": null,
113 "Range": null,
114 "Width": 12,
115 "Access": {
116 "Strategy": "Continuous",
117 "RegCount": 2, "ItemCount": 2, "ItemWidth": 12, "StartAddr": 2, "StartBit": 16
118 }
119 }
120 ],
121 "Returns": null,
122 "CallAddr": 3,
123 "ExitAddr": null
124 },
125 {
126 "Name": "Unprogram",
127 "Doc": "",
128 "IsArray": false,
129 "Count": 1,
130 "Delay": null,
131 "Params": null,
132 "Returns": null,
133 "CallAddr": 4,
134 "ExitAddr": null
135 }
136 ],
137 "Statics": null,
138 "Statuses": [
139 {
140 "Name": "Counter",
141 "Doc": "",
142 "IsArray": false,
143 "Count": 1,
144 "Atomic": true,
145 "Groups": null,
146 "ReadValue": "",
147 "Width": 48,
148 "Access": {
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149 "Strategy": "Continuous", "RegCount": 2, "StartAddr": 6, "StartBit": 0, "EndBit": 15
150 }
151 },
152 {
153 "Name": "Workers_Ready",
154 "Doc": "",
155 "IsArray": false,
156 "Count": 1,
157 "Atomic": true,
158 "Groups": null,
159 "ReadValue": "",
160 "Width": 24,
161 "Access": { "Strategy": "Single", "Addr": 8, "StartBit": 0, "EndBit": 23 }
162 },
163 {
164 "Name": "programmed",
165 "Doc": "",
166 "IsArray": false,
167 "Count": 1,
168 "Atomic": true,
169 "Groups": [ "status" ],
170 "ReadValue": "",
171 "Width": 1,
172 "Access": { "Strategy": "Single", "Addr": 8, "StartBit": 24, "EndBit": 24 }
173 },
174 {
175 "Name": "programmed_in_past",
176 "Doc": "",
177 "IsArray": false,
178 "Count": 1,
179 "Atomic": true,
180 "Groups": [ "status" ],
181 "ReadValue": "",
182 "Width": 1,
183 "Access": { "Strategy": "Single", "Addr": 8, "StartBit": 25, "EndBit": 25 }
184 }
185 ],
186 "Streams": null,
187 "Subblocks": null
188 }
189 ]
190 }
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B Example design registerification re-
sults

Functionality addresses are relative addresses. Absolute addresses are obtained by adding
block start address.

1 {
2 "Name": "Main",
3 "Doc": "",
4 "IsArray": false,
5 "Count": 1,
6 "Masters": 1,
7 "Reset": "",
8 "Width": 32,
9 "Sizes": { "BlockAligned": 32, "Compact": 19, "Own": 14 },

10 "AddrSpace": { "Start": 0, "End": 31 },
11 "Consts": {
12 "Bools": null, "BoolLists": null, "Floats": null, "Ints": null, "IntLists": null, "Strings": null
13 },
14 "Configs": [ {
15 "Name": "C1",
16 "Doc": "",
17 "IsArray": false,
18 "Count": 1,
19 "Atomic": true,
20 "InitValue": "",
21 "Groups": null,
22 "Range": null,
23 "ReadValue": "",
24 "ResetValue": "",
25 "Width": 7,
26 "Access": { "Type": "SingleOneReg", "Addr": 6, "StartBit": 0, "EndBit": 6 }
27 }, {
28 "Name": "C2",
29 "Doc": "",
30 "IsArray": false,
31 "Count": 1,
32 "Atomic": true,
33 "InitValue": "",
34 "Groups": null,
35 "Range": null,
36 "ReadValue": "",
37 "ResetValue": "",
38 "Width": 9,
39 "Access": { "Type": "SingleOneReg", "Addr": 5, "StartBit": 0, "EndBit": 8 }
40 }, {
41 "Name": "C3",
42 "Doc": "",
43 "IsArray": false,
44 "Count": 1,
45 "Atomic": true,
46 "InitValue": "",
47 "Groups": null,
48 "Range": null,
49 "ReadValue": "",
50 "ResetValue": "",
51 "Width": 12,
52 "Access": { "Type": "SingleOneReg", "Addr": 4, "StartBit": 0, "EndBit": 11 }
53 }, {
54 "Name": "CA",
55 "Doc": "",
56 "IsArray": true,
57 "Count": 10,
58 "Atomic": true,
59 "InitValue": "",
60 "Groups": null,
61 "Range": null,
62 "ReadValue": "",
63 "ResetValue": "",
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64 "Width": 8,
65 "Access": {
66 "Type": "ArrayNInRegMInEndReg", "RegCount": 3, "ItemCount": 10, "ItemWidth": 8,
67 "ItemsInReg": 4, "ItemsInEndReg": 2, "StartAddr": 1, "StartBit": 0
68 }
69 }
70 ],
71 "Irqs": null,
72 "Masks": [ {
73 "Name": "Mask",
74 "Doc": "",
75 "IsArray": false,
76 "Count": 1,
77 "Atomic": true,
78 "Groups": null,
79 "InitValue": "",
80 "ReadValue": "",
81 "ResetValue": "",
82 "Width": 16,
83 "Access": { "Type": "SingleOneReg", "Addr": 7, "StartBit": 0, "EndBit": 15 }
84 }
85 ],
86 "Memories": null,
87 "Procs": null,
88 "Statics": [ {
89 "Name": "Version",
90 "Doc": "",
91 "IsArray": false,
92 "Count": 1,
93 "Groups": null,
94 "InitValue": "x\"010102\"",
95 "ReadValue": "",
96 "ResetValue": "",
97 "Width": 24,
98 "Access": { "Type": "SingleOneReg", "Addr": 8, "StartBit": 0, "EndBit": 23 }
99 }, {

100 "Name": "ID",
101 "Doc": "Bus identifier.",
102 "IsArray": false,
103 "Count": 1,
104 "Groups": null,
105 "InitValue": "x\"cacd0d6f\"",
106 "ReadValue": "",
107 "ResetValue": "",
108 "Width": 32,
109 "Access": { "Type": "SingleOneReg", "Addr": 0, "StartBit": 0, "EndBit": 31 }
110 }
111 ],
112 "Statuses": [ {
113 "Name": "S1",
114 "Doc": "",
115 "IsArray": false,
116 "Count": 1,
117 "Atomic": true,
118 "Groups": null,
119 "ReadValue": "",
120 "Width": 7,
121 "Access": { "Type": "SingleOneReg", "Addr": 8, "StartBit": 24, "EndBit": 30 }
122 }, {
123 "Name": "S2",
124 "Doc": "",
125 "IsArray": false,
126 "Count": 1,
127 "Atomic": true,
128 "Groups": null,
129 "ReadValue": "",
130 "Width": 9,
131 "Access": { "Type": "SingleOneReg", "Addr": 5, "StartBit": 9, "EndBit": 17 }
132 }, {
133 "Name": "S3",
134 "Doc": "",
135 "IsArray": false,
136 "Count": 1,
137 "Atomic": true,
138 "Groups": null,
139 "ReadValue": "",
140 "Width": 12,
141 "Access": { "Type": "SingleOneReg", "Addr": 4, "StartBit": 12, "EndBit": 23 }
142 }, {
143 "Name": "SA",
144 "Doc": "",
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145 "IsArray": true,
146 "Count": 10,
147 "Atomic": true,
148 "Groups": null,
149 "ReadValue": "",
150 "Width": 8,
151 "Access": {
152 "Type": "ArrayNInRegMInEndReg", "RegCount": 3, "ItemCount": 10, "ItemWidth": 8,
153 "ItemsInReg": 4, "ItemsInEndReg": 2, "StartAddr": 9, "StartBit": 0
154 }
155 }, {
156 "Name": "Counter",
157 "Doc": "",
158 "IsArray": false,
159 "Count": 1,
160 "Atomic": true,
161 "Groups": null,
162 "ReadValue": "",
163 "Width": 33,
164 "Access": { "Type": "SingleNRegs", "RegCount": 2, "StartAddr": 12, "StartBit": 0, "EndBit": 0 }
165 }
166 ],
167 "Streams": null,
168 "Subblocks": [ {
169 "Name": "Subblock",
170 "Doc": "",
171 "IsArray": false,
172 "Count": 1,
173 "Masters": 1,
174 "Reset": "",
175 "Width": 32,
176 "Sizes": { "BlockAligned": 8, "Compact": 5, "Own": 5 },
177 "AddrSpace": { "Start": 24, "End": 31 },
178 "Consts": {
179 "Bools": null, "BoolLists": null, "Floats": null, "Ints": null, "IntLists": null, "Strings": null
180 },
181 "Configs": null,
182 "Irqs": null,
183 "Masks": null,
184 "Memories": null,
185 "Procs": [ {
186 "Name": "Add",
187 "Doc": "",
188 "IsArray": false,
189 "Count": 1,
190 "Delay": null,
191 "Params": [ {
192 "Name": "A",
193 "Doc": "",
194 "IsArray": false,
195 "Count": 1,
196 "Groups": null,
197 "Range": null,
198 "Width": 20,
199 "Access": { "Type": "SingleOneReg", "Addr": 0, "StartBit": 0, "EndBit": 19 }
200 }, {
201 "Name": "B",
202 "Doc": "",
203 "IsArray": false,
204 "Count": 1,
205 "Groups": null,
206 "Range": null,
207 "Width": 10,
208 "Access": { "Type": "SingleOneReg", "Addr": 0, "StartBit": 20, "EndBit": 29 }
209 }, {
210 "Name": "C",
211 "Doc": "",
212 "IsArray": false,
213 "Count": 1,
214 "Groups": null,
215 "Range": null,
216 "Width": 8,
217 "Access": {
218 "Type": "SingleNRegs", "RegCount": 2, "StartAddr": 0,
219 "StartBit": 30, "EndBit": 5
220 }
221 }
222 ],
223 "Returns": [ {
224 "Name": "Sum",
225 "Doc": "",
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226 "IsArray": false,
227 "Count": 1,
228 "Groups": null,
229 "Width": 21,
230 "Access": { "Type": "SingleOneReg", "Addr": 1, "StartBit": 6, "EndBit": 26 }
231 }
232 ],
233 "CallAddr": 1,
234 "ExitAddr": 1
235 }
236 ],
237 "Statics": null,
238 "Statuses": null,
239 "Streams": [ {
240 "Name": "Add_Stream",
241 "Doc": "",
242 "IsArray": false,
243 "Count": 1,
244 "Delay": null,
245 "Params": [ {
246 "Name": "A",
247 "Doc": "",
248 "IsArray": false,
249 "Count": 1,
250 "Groups": null,
251 "Range": null,
252 "Width": 20,
253 "Access": { "Type": "SingleOneReg", "Addr": 2, "StartBit": 0, "EndBit": 19 }
254 }, {
255 "Name": "B",
256 "Doc": "",
257 "IsArray": false,
258 "Count": 1,
259 "Groups": null,
260 "Range": null,
261 "Width": 10,
262 "Access": { "Type": "SingleOneReg", "Addr": 2, "StartBit": 20, "EndBit": 29 }
263 }, {
264 "Name": "C",
265 "Doc": "",
266 "IsArray": false,
267 "Count": 1,
268 "Groups": null,
269 "Range": null,
270 "Width": 8,
271 "Access": {
272 "Type": "SingleNRegs", "RegCount": 2, "StartAddr": 2, "StartBit": 30, "EndBit": 5
273 }
274 }
275 ],
276 "Returns": null,
277 "StbAddr": 3
278 },
279 {
280 "Name": "Sum_Stream",
281 "Doc": "",
282 "IsArray": false,
283 "Count": 1,
284 "Delay": null,
285 "Params": null,
286 "Returns": [ {
287 "Name": "Sum",
288 "Doc": "",
289 "IsArray": false,
290 "Count": 1,
291 "Groups": null,
292 "Width": 21,
293 "Access": { "Type": "SingleOneReg", "Addr": 4, "StartBit": 0, "EndBit": 20 }
294 }
295 ],
296 "StbAddr": 4
297 }
298 ],
299 "Subblocks": null
300 }
301 ]
302 }
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C Example design register map

ID [0:31]
0x00

CA[0] [0:7] CA[1] [8:15] CA[2] [16:23] CA[3] [24:31]
0x01

CA[4] [0:7] CA[5] [8:15] CA[6] [16:23] CA[7] [24:31]

CA[8] [0:7] CA[9] [8:15] Gap [16:31]

0x02

0x03

C2 [0:8] S2 [9:17] Gap [18:31] 
0x04
C3 [0:11] S3 [12:23] Gap [24:31] 

0x05

0x06
C1 [0:6] Gap [7:31]

0x07
Mask [0:15] Gap [16:31]

Version [0:23] S1 [24:30] Gap [31:31]
0x08

SA[0] [0:7] SA[1] [8:15] SA[2] [16:23] SA[3] [24:31]
0x09

SA[4] [0:7] SA[5] [8:15] SA[6] [16:23] SA[7] [24:31]

SA[8] [0:7] SA[9] [8:15] Gap [16:31]

0x0A

0x0B

Counter(0) [0:31]
0x0C

Counter(1) [0:0] Gap [1:31]
0x0D

Gap [0:31]
0x0E

Gap [0:31]
0x0F

Add.A [0:19] Add.B [20:29] Add.C(0) [30:31]
0x18

Add.C(1) [0:5] Add.Sum [6:26] Gap [27:31]
0x19 – Add proc call and exit address

Add_Stream.A [0:19] Add_Stream.B [20:29] Add_Stream.C(0) [30:31]
0x1A

0x1B – Add_Stream strobe address

Add_Stream.C(1) [0:5] Gap [6:31]
0x1C – Sum_Stream strobe address

Sum_Stream.Sum [0:20] Gap [21:31]

Gap [0:31]
0x16

Gap [0:31]
0x17

Gap [0:31]
0x1D

Gap [0:31]
0x1E

Gap [0:31]
0x1F

Gap [0:31]
0x10

Gap [0:31]
0x15

Gap [0:31]
0x11

Gap [0:31]
0x12

Gap [0:31]
0x13

Gap [0:31]
0x14

Subblock
Address Space

Main
Address Space

Unused
Address Space
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D Python code automatically gener-
ated for the example design

1 # This file has been automatically generated by the vfbdb tool.
2 # Do not edit it manually, unless you really know what you do.
3 # https://github.com/Functional-Bus-Description-Language/go-vfbdb
4
5 import math
6 import time
7
8 BUS_WIDTH = 32
9

10
11 def calc_mask(m):
12 """
13 calc_mask calculates mask based on tuple (End Bit, Start Bit).
14 The returned mask is shifted to the right.
15 """
16 return (((1 << (m[0] + 1)) - 1) ^ ((1 << m[1]) - 1)) >> m[1]
17
18
19 class _BufferIface:
20 """
21 _BufferIface is the internal interface used for reading/writing internal buffer
22 (after reading)/(before writing) the target buffer. It is very useful
23 as it allows treating proc or stream params/returns as configs/statuses.
24 """
25
26 def set_buf(self, buf):
27 self.buf = buf
28
29 def write(self, addr, data):
30 self.buf[addr] = data
31
32 def read(self, addr):
33 return self.buf[addr]
34
35
36 def check_arg_values(params, *args):
37 """
38 check_arg_values checks that all arguments are in valid range and raises
39 an exception if any argument is out of range.
40 """
41 for arg_idx, arg in enumerate(args):
42 param = params[arg_idx]
43
44 type = param['Access']['Type']
45
46 if type.startswith("Single"):
47 assert 0 <= arg < 2 ** param['Width'], "{} value overrange ({})".format(
48 param['Name'], arg
49 )
50 elif type.startswith("Array"):
51 assert (
52 len(arg) == param['Access']['ItemCount']
53 ), "invalid number of items ({}) for {} param, expecting {} items".format(
54 len(arg), param['Name'], param['ItemCount']
55 )
56
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57 for val_idx, v in enumerate(arg):
58 assert (
59 0 <= v < 2 ** param['Width']
60 ), "{}[{}] value overrange ({})".format(param['Name'], val_idx, v)
61 else:
62 raise Exception("invalid param access type {}".format(type))
63
64
65 def pack_params(params, *args):
66 check_arg_values(params, *args)
67
68 buf = []
69 addr = None # Current argument address
70 data = 0
71
72 for arg_idx, arg in enumerate(args):
73 param = params[arg_idx]
74 a = param['Access']
75
76 if addr is None:
77 addr = a['StartAddr']
78 elif a['StartAddr'] > addr:
79 buf.append(data)
80 data = 0
81 addr = a['StartAddr']
82
83 if a['Type'] == 'SingleOneReg':
84 data |= arg << a['StartBit']
85 elif a['Type'] == 'SingleNRegs':
86 for r in range(a['RegCount']):
87 if r == 0:
88 data |= (arg & calc_mask((BUS_WIDTH - 1, a['StartBit']))) << a[
89 'StartBit'
90 ]
91 buf.append(data)
92 arg = arg >> (BUS_WIDTH - a['StartBit'])
93 else:
94 addr += 1
95 data = arg & calc_mask((BUS_WIDTH, 0))
96 arg = arg >> BUS_WIDTH
97 if r < a['RegCount'] - 1:
98 buf.append(data)
99 data = 0

100 elif a['Type'] == 'ArrayNRegs':
101 start_bit = a['StartBit']
102 for i, v in enumerate(arg):
103 width = param['Width']
104 # Number of registers ith argument from vector occupies.
105 reg_count = (
106 int(math.ceil((width - (BUS_WIDTH - start_bit)) / BUS_WIDTH)) + 1
107 )
108 for _ in range(reg_count):
109 reg_width = width
110 if reg_width > BUS_WIDTH - start_bit:
111 reg_width = BUS_WIDTH - start_bit
112 data |= (v & ((1 << reg_width) - 1)) << start_bit
113 v >>= reg_width
114 start_bit = start_bit + reg_width
115 if start_bit >= BUS_WIDTH:
116 buf.append(data)
117 data = 0
118 start_bit %= BUS_WIDTH
119 width -= reg_width
120 else:
121 raise Exception("unhandled access type {}".format(a['Type']))
122
123 buf.append(data)
124
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125 return buf
126
127
128 def create_mock_returns(buf_iface, start_addr, returns):
129 """
130 Create_mock_returns creates mock returns that can be used with internal software buffer.
131 It is useful to be used with proc with returns and with upstram.
132 """
133 buf_size = 0
134 rets = []
135 for ret in returns:
136 a = ret['Access']
137 buf_size += a['RegCount']
138 r = {}
139 r['Name'] = ret['Name']
140
141 if a['Type'] == 'SingleOneReg':
142 r['Status'] = StatusSingleOneReg(
143 buf_iface, a['StartAddr'] - start_addr, a['StartBit'], a['EndBit']
144 )
145 elif a['Type'] == 'SingleNRegs':
146 r['Status'] = StatusSingleNRegs(
147 buf_iface,
148 a['StartAddr'] - start_addr,
149 a['RegCount'],
150 (BUS_WIDTH - 1, a['StartBit']),
151 (a['EndBit'], 0),
152 )
153 else:
154 raise Exception("unimplemented")
155
156 rets.append(r)
157
158 return buf_size, rets
159
160
161 class EmptyProc:
162 def __init__(self, iface, call_addr, delay, exit_addr):
163 self.iface = iface
164 self.call_addr = call_addr
165 self.delay = delay
166 self.exit_addr = exit_addr
167
168 def __call__(self):
169 self.iface.write(self.call_addr, 0)
170 if self.delay is not None:
171 if self.delay != 0:
172 time.sleep(self.delay)
173 self.iface.read(self.exit_addr)
174
175
176 class ParamsProc:
177 def __init__(self, iface, params_start_addr, params, delay, exit_addr):
178 self.iface = iface
179 self.params_start_addr = params_start_addr
180 self.params = params
181 self.delay = delay
182 self.exit_addr = exit_addr
183
184 def __call__(self, *args):
185 assert len(args) == len(
186 self.params
187 ), "{}() takes {} arguments but {} were given".format(
188 self.__name__, len(self.params), len(args)
189 )
190
191 buf = pack_params(self.params, *args)
192
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193 if len(buf) == 1:
194 self.iface.write(self.params_start_addr, buf[0])
195 else:
196 self.iface.writeb(self.params_start_addr, buf)
197
198 if self.delay is not None:
199 if self.delay != 0:
200 time.sleep(self.delay)
201 self.iface.read(self.exit_addr)
202
203
204 class ReturnsProc:
205 def __init__(self, iface, returns_start_addr, returns, delay, call_addr):
206 self.iface = iface
207 self.returns_start_addr = returns_start_addr
208 self.delay = delay
209 self.call_addr = call_addr
210
211 self.buf_iface = _BufferIface()
212 self.buf_size, self.returns = create_mock_returns(
213 self.buf_iface, returns_start_addr, returns
214 )
215
216 def __call__(self):
217 if self.delay is not None:
218 self.iface.write(self.call_addr, 0)
219 if self.delay != 0:
220 time.sleep(self.delay)
221
222 if self.buf_size == 1:
223 buf = [self.iface.read(self.returns_start_addr)]
224 else:
225 buf = self.iface.readb(self.returns_start_addr, self.buf_size)
226
227 self.buf_iface.set_buf(buf)
228 tup = [] # List to allow append but must be cast to tuple.
229
230 for ret in self.returns:
231 tup.append(ret['Status'].read())
232
233 return tuple(tup)
234
235
236 class ParamsAndReturnsProc:
237 def __init__(
238 self, iface, params_start_addr, params, returns_start_addr, returns, delay
239 ):
240 self.iface = iface
241
242 self.params_start_addr = params_start_addr
243 self.params = params
244
245 self.returns_start_addr = returns_start_addr
246 self.returns_buf_iface = _BufferIface()
247 self.returns_buf_size, self.returns = create_mock_returns(
248 self.returns_buf_iface, returns_start_addr, returns
249 )
250
251 self.delay = delay
252
253 def __call__(self, *args):
254 assert len(args) == len(
255 self.params
256 ), "{}() takes {} arguments but {} were given".format(
257 self.__name__, len(self.params), len(args)
258 )
259
260 params_buf = pack_params(self.params, *args)
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261 if len(params_buf) == 1:
262 self.iface.write(self.params_start_addr, params_buf[0])
263 else:
264 self.iface.writeb(self.params_start_addr, params_buf)
265
266 if self.delay is not None:
267 if self.delay != 0:
268 time.sleep(self.delay)
269
270 if self.returns_buf_size == 1:
271 returns_buf = [self.iface.read(self.returns_start_addr)]
272 else:
273 returns_buf = self.iface.readb(
274 self.returns_start_addr, self.returns_buf_size
275 )
276 self.returns_buf_iface.set_buf(returns_buf)
277 tup = [] # List to allow append but must be cast to tuple.
278 for ret in self.returns:
279 tup.append(ret['Status'].read())
280
281 return tuple(tup)
282
283
284 class Static:
285 def __init__(self, value):
286 self._value = value
287
288 @property
289 def value(self):
290 return self._value
291
292 @value.setter
293 def value(self, v):
294 raise Exception(f"cannot set value of static element")
295
296
297 class StatusSingleOneReg:
298 def __init__(self, iface, addr, start_bit, end_bit):
299 self.iface = iface
300
301 self.addr = addr
302 self.start_bit = start_bit
303
304 self.mask = calc_mask((end_bit, start_bit))
305 self.width = end_bit - start_bit + 1
306
307 def read(self):
308 return (self.iface.read(self.addr) >> self.start_bit) & self.mask
309
310
311 class StaticSingleOneReg(Static, StatusSingleOneReg):
312 def __init__(self, iface, addr, start_bit, end_bit, value):
313 Static.__init__(self, value)
314 StatusSingleOneReg.__init__(self, iface, addr, start_bit, end_bit)
315
316
317 class ConfigSingleOneReg(StatusSingleOneReg):
318 def __init__(self, iface, addr, start_bit, end_bit):
319 super().__init__(iface, addr, start_bit, end_bit)
320
321 def write(self, data):
322 assert 0 <= data < 2 ** self.width, "value overrange ({})".format(data)
323 self.iface.write(self.addr, data << self.start_bit)
324
325
326 class MaskSingleOneReg(StatusSingleOneReg):
327 def __init__(self, iface, addr, start_bit, end_bit):
328 super().__init__(iface, addr, start_bit, end_bit)
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329
330 def _bits_to_iterable(self, bits):
331 if bits == None:
332 return range(self.width)
333 elif type(bits) == int:
334 return (bits,)
335 return bits
336
337 def _assert_bits_in_range(self, bits):
338 for b in bits:
339 assert 0 <= b < self.width, "mask overrange"
340
341 def _assert_bits_to_update(self, bits):
342 if bits == None:
343 raise Exception("bits to update cannot have None value")
344 if type(bits).__name__ in ["list", "tuple", "range", "set"] and len(bits) == 0:
345 raise Exception("empty " + type(bits) + " of bits to update")
346
347 def set(self, bits=None):
348 bits = self._bits_to_iterable(bits)
349 self._assert_bits_in_range(bits)
350
351 mask = 0
352 for b in bits:
353 mask |= 1 << b
354
355 self.iface.write(self.addr, mask << self.start_bit)
356
357 def clear(self, bits=None):
358 bits = self._bits_to_iterable(bits)
359 self._assert_bits_in_range(bits)
360
361 mask = self.mask
362 for b in bits:
363 mask ^= 1 << b
364
365 self.iface.write(self.addr, mask << self.start_bit)
366
367 def toggle(self, bits=None):
368 bits = self._bits_to_iterable(bits)
369 self._assert_bits_in_range(bits)
370
371 xor_mask = 0
372 for b in bits:
373 xor_mask |= 1 << b
374 xor_mask <<= self.start_bit
375
376 mask = self.iface.read(self.addr) ^ xor_mask
377 self.iface.write(self.addr, mask)
378
379 def update_set(self, bits):
380 self._assert_bits_to_update(bits)
381
382 bits = self._bits_to_iterable(bits)
383 self._assert_bits_in_range(bits)
384
385 mask = 0
386 for b in bits:
387 mask |= 1 << b
388
389 mask = self.iface.read(self.addr) | (mask << self.start_bit)
390 self.iface.write(self.addr, mask)
391
392 def update_clear(self, bits):
393 self._assert_bits_to_update(bits)
394
395 bits = self._bits_to_iterable(bits)
396 self._assert_bits_in_range(bits)
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397
398 mask = 2 ** BUS_WIDTH - 1
399 for b in bits:
400 mask ^= 1 << b
401
402 mask = self.iface.read(self.addr) & (mask << self.start_bit)
403 self.iface.write(self.addr, mask)
404
405
406 class StatusSingleNRegs:
407 def __init__(self, iface, start_addr, reg_count, start_mask, end_mask):
408 self.iface = iface
409 self.addrs = list(range(start_addr, start_addr + reg_count))
410 self.width = 0
411 self.masks = []
412 self.reg_shifts = []
413 self.data_shifts = []
414
415 for i in range(reg_count):
416 if i == 0:
417 self.masks.append(calc_mask(start_mask))
418 self.reg_shifts.append(start_mask[1])
419 self.data_shifts.append(0)
420 self.width += start_mask[0] - start_mask[1] + 1
421 else:
422 self.reg_shifts.append(0)
423 self.data_shifts.append(self.width)
424 if i == reg_count - 1:
425 self.masks.append(calc_mask(end_mask))
426 self.width += end_mask[0] - end_mask[1] + 1
427 else:
428 self.masks.append(calc_mask((BUS_WIDTH - 1, 0)))
429 self.width += BUS_WIDTH
430
431 def read(self):
432 data = 0
433 for i, a in enumerate(self.addrs):
434 data |= (
435 (self.iface.read(a) >> self.reg_shifts[i]) & self.masks[i]
436 ) << self.data_shifts[i]
437 return data
438
439
440 class ConfigSingleNRegs(StatusSingleNRegs):
441 def __init__(self, iface, start_addr, reg_count, start_mask, end_mask):
442 super().__init__(iface, start_addr, reg_count, start_mask, end_mask)
443
444 def write(self, data):
445 assert 0 <= data < 2 ** self.width, "value overrange ({})".format(data)
446 for i, a in enumerate(self.addrs):
447 self.iface.write(
448 a, ((data >> self.data_shifts[i]) & self.masks[i]) << self.reg_shifts[i]
449 )
450
451
452 class StaticSingleNRegs(Static, StatusSingleNRegs):
453 def __init__(self, iface, start_addr, reg_count, start_mask, end_mask, value):
454 Static.__init__(self, value)
455 StatusSingleNRegs.__init__(
456 self, iface, start_addr, reg_count, start_mask, end_mask
457 )
458
459
460 class StatusArrayOneReg:
461 def __init__(self, iface, addr, start_bit, width, item_count):
462 self.iface = iface
463 self.addr = addr
464 self.start_bit = start_bit
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465 self.width = width
466 self.item_count = item_count
467
468 def __len__(self):
469 return self.item_count
470
471 def read(self, idx=None):
472 reg = self.iface.read(self.addr)
473 mask = (1 << self.width) - 1
474
475 if type(idx) == int:
476 assert 0 <= idx < self.item_count
477 shift = self.start_bit + self.width * idx
478 return (reg >> shift) & mask
479 elif idx is None:
480 idx = tuple(range(0, self.item_count))
481
482 for i in idx:
483 assert 0 <= i < self.item_count
484
485 data = []
486 for i in idx:
487 shift = self.start_bit + self.width * i
488 data.append((reg >> shift) & mask)
489
490 return data
491
492
493 class ConfigArrayOneReg(StatusArrayOneReg):
494 def __init__(self, iface, addr, start_bit, width, item_count):
495 super().__init__(iface, addr, start_bit, width, item_count)
496
497 def write(self, data, offset=0):
498 """ offset - elements index offset, applied also when data is dictionary """
499 assert 0 <= len(data) <= self.item_count, f"invalid data len {len(data)}"
500
501 val = 0
502 mask = 0
503
504 if type(data) == dict:
505 for i, v in data.items():
506 assert type(i) == int, f'invalid index type {type(i)}'
507 assert i >= 0, f"negative index {i}"
508 assert i + offset < self.item_count, f"index overrange {i}"
509 assert (
510 0 <= v < 2 ** self.width
511 ), f"data out of range, index {i}, value {v}"
512 shift = self.start_bit + (i + offset) * self.width
513 val |= v << shift
514 mask |= (2 ** self.width - 1) << shift
515 else:
516 assert len(data) + offset <= self.item_count
517
518 for i, v in enumerate(data):
519 assert (
520 0 <= v < 2 ** self.width
521 ), f"data out of range, index {i}, value {v}"
522 shift = self.start_bit + (i + offset) * self.width
523 val |= v << shift
524 mask |= 2 ** self.width - 1 << shift
525
526 if len(data) == self.item_count:
527 self.iface.write(self.addr, val)
528 else:
529 self.iface.rmw(self.addr, val, mask)
530
531
532 class StatusArrayOneInReg:
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533 def __init__(self, iface, addr, mask, item_count):
534 self.iface = iface
535 self.addr = addr
536 self.mask = calc_mask(mask)
537 self.shift = mask[1]
538 self.width = mask[0] - mask[1] + 1
539 self.item_count = item_count
540
541 def __len__(self):
542 return self.item_count
543
544 def read(self, idx=None):
545 if idx is None:
546 idx = tuple(range(0, self.item_count))
547 if self.item_count == 1:
548 return (self.iface.read(self.addr) >> self.shift) & self.mask
549 else:
550 buf = self.iface.readb(self.addr, self.item_count)
551 return [(data >> self.shift) & self.mask for data in buf]
552 elif type(idx) == int:
553 assert 0 <= idx < self.item_count
554 return (self.iface.read(self.addr + idx) >> self.shift) & self.mask
555 else:
556 for i in idx:
557 assert 0 <= i < self.item_count
558 return [
559 (self.iface.read(self.addr + i) >> self.shift) & self.mask for i in idx
560 ]
561
562
563 class ConfigArrayOneInReg(StatusArrayOneInReg):
564 def __init__(self, iface, addr, mask, item_count):
565 super().__init__(iface, addr, mask, item_count)
566
567 def write(self, data, offset=0):
568 """ offset - elements index offset, applied also when data is dictionary """
569 assert 0 <= len(data) <= self.item_count, f"invalid data len {len(data)}"
570
571 if type(data) == dict:
572 idxs = sorted(data.keys())
573 for idx in idxs:
574 self.iface.write(self.addr + offset + idx, data[idx] << self.shift)
575 else:
576 assert len(data) + offset <= self.item_count
577
578 if len(data) == 1:
579 self.iface.write(self.addr + offset, data[0] << self.shift)
580 else:
581 buf = []
582 for d in data:
583 buf.append(d << self.shift)
584 self.iface.writeb(self.addr + offset, buf)
585
586
587 class StatusArrayNInReg:
588 def __init__(self, iface, addr, start_bit, width, item_count, items_in_reg):
589 self.iface = iface
590 self.addr = addr
591 self.start_bit = start_bit
592 self.width = width
593 self.item_count = item_count
594 self.items_in_reg = items_in_reg
595 self.reg_count = math.ceil(item_count / self.items_in_reg)
596
597 def __len__(self):
598 return self.item_count
599
600 def read(self, idx=None):
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601 mask = (1 << self.width) - 1
602
603 if idx is None:
604 idx = tuple(range(0, self.item_count))
605 reg_idx = tuple(range(self.reg_count))
606 elif type(idx) == int:
607 assert 0 <= idx < self.item_count
608 reg_idx = idx // self.items_in_reg
609 shift = self.start_bit + self.width * (idx % self.items_in_reg)
610 return (self.iface.read(self.addr + reg_idx) >> shift) & mask
611 else:
612 reg_idx = set()
613 for i in idx:
614 assert 0 <= i < self.item_count
615 reg_idx.add(i // self.items_in_reg)
616
617 reg_data = {reg_i: self.iface.read(self.addr + reg_i) for reg_i in reg_idx}
618
619 data = []
620 for i in idx:
621 shift = self.start_bit + self.width * (i % self.items_in_reg)
622 data.append((reg_data[i // self.items_in_reg] >> shift) & mask)
623
624 return data
625
626
627 class ConfigArrayNInReg(StatusArrayNInReg):
628 def __init__(self, iface, addr, start_bit, width, item_count, items_in_reg):
629 super().__init__(iface, addr, start_bit, width, item_count, items_in_reg)
630
631 def write(self, data, offset=0):
632 """ offset - elements index offset, applied also when data is dictionary """
633 assert 0 <= len(data) <= self.item_count, f"invalid data len {len(data)}"
634
635 regs = dict()
636
637 def add_to_regs(idx, val):
638 idx = idx + offset
639 assert idx <= self.item_count, f"index overrange {idx + offset}"
640 reg_idx = idx // self.items_in_reg
641 if reg_idx not in regs:
642 regs[reg_idx] = [0, 0] # [value, mask]
643 shift = self.start_bit + (idx % self.items_in_reg) * self.width
644 regs[reg_idx][0] |= val << shift
645 regs[reg_idx][1] |= (2 ** self.width - 1) << shift
646
647 if type(data) == dict:
648 for idx, val in data.items():
649 add_to_regs(idx, val)
650 else:
651 for idx, val in enumerate(data):
652 add_to_regs(idx, val)
653
654 reg_idxs = sorted(regs.keys())
655 for idx in reg_idxs:
656 self.iface.rmw(self.addr + idx, regs[idx][0], regs[idx][1])
657
658
659 class StatusArrayNInRegMInEndReg(StatusArrayNInReg):
660 def __init__(self, iface, addr, start_bit, width, item_count, items_in_reg):
661 super().__init__(iface, addr, start_bit, width, item_count, items_in_reg)
662
663
664 class ConfigArrayNInRegMInEndReg(ConfigArrayNInReg):
665 def __init__(self, iface, addr, start_bit, width, item_count, items_in_reg):
666 super().__init__(iface, addr, start_bit, width, item_count, items_in_reg)
667
668
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669 class StatusArrayOneInNRegs:
670 def __init__(
671 self, iface, addr, width, item_count, regs_per_item, reg_count, end_bit
672 ):
673 self.iface = iface
674
675 self.addr = addr
676 self.width = width
677 self.item_count = item_count
678
679 self.regs_per_item = regs_per_item
680 self.reg_count = reg_count
681 self.last_reg_mask = calc_mask((end_bit, 0))
682
683 def __len__(self):
684 return self.item_count
685
686 def _regs_to_data(self, buf):
687 assert len(buf) == self.regs_per_item
688 data = 0
689 for i, bite in enumerate(buf):
690 if i == len(buf) - 1:
691 data |= (bite & self.last_reg_mask) << (i * BUS_WIDTH)
692 else:
693 data |= bite << (i * BUS_WIDTH)
694 return data
695
696 def read(self, idx=None):
697 if idx is None:
698 buf = self.iface.readb(self.addr, self.reg_count)
699 data = []
700 for i in range(self.item_count):
701 data.append(
702 self._regs_to_data(
703 buf[i * self.regs_per_item : (i + 1) * self.regs_per_item]
704 )
705 )
706 return data
707 elif type(idx) == int:
708 assert 0 <= idx < self.item_count
709 buf = self.iface.readb(
710 self.addr + idx * self.regs_per_item, self.regs_per_item
711 )
712 return self._regs_to_data(buf)
713 else:
714 data = []
715 for i in idx:
716 assert 0 <= i < self.item_count
717 buf = self.iface.readb(
718 self.addr + i * self.regs_per_item, self.regs_per_item
719 )
720 data.append(self._regs_to_data(buf))
721 return data
722
723
724 class Upstream:
725 def __init__(self, iface, addr, delay, returns):
726 self.iface = iface
727 self.addr = addr
728 self.delay = delay
729 self.buf_iface = _BufferIface()
730 self.buf_size, self.returns = create_mock_returns(self.buf_iface, addr, returns)
731
732 def read(self, n):
733 """
734 Read the stream n times.
735 Read returns a tuple of tuples.
736 Non grouped returns are returned as values within tuple.
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737 """
738 if self.buf_size == 1:
739 read_data = [[x] for x in self.iface.cread(self.addr, n)]
740 else:
741 read_data = self.iface.creadb(self.addr, self.buf_size, n)
742
743 data = []
744 for buf in read_data:
745 self.buf_iface.set_buf(buf)
746 tup = [] # List to allow append but must be cast to tuple.
747
748 for ret in self.returns:
749 tup.append(ret['Status'].read())
750
751 data.append(tuple(tup))
752
753 return tuple(data)
754
755
756 class Downstream:
757 def __init__(self, iface, addr, delay, params):
758 self.iface = iface
759 self.addr = addr
760 self.params = params
761 self.delay = delay
762
763 def write(self, data):
764 wbuf = [] # Write buffer
765 args_in_one_reg = False # All arguments occupy one register
766
767 for args in data:
768 assert len(args) == len(
769 self.params
770 ), f"invalid number of arguments {len(args)}, want {len(self.params)}"
771
772 buf = pack_params(self.params, *args)
773 if len(buf) == 1:
774 args_in_one_reg = True
775 wbuf.append(buf[0])
776 else:
777 wbuf.append(buf)
778
779 if self.delay is None:
780 if args_in_one_reg:
781 self.iface.cwrite(self.addr, wbuf)
782 else:
783 self.iface.cwriteb(self.addr, wbuf)
784 else:
785 for i, val in enumerate(wbuf):
786 if args_in_one_reg:
787 self.iface.write(self.addr, val)
788 else:
789 self.iface.writeb(self.addr, buf)
790
791 if i < len(wbuf) - 1:
792 time.sleep(self.delay)
793
794
795 class Main:
796 def __init__(self, iface):
797 self.iface = iface
798 self.Version = StaticSingleOneReg(iface, 8, 0, 23, 0b0000000010000000100000010)
799 self.ID = StaticSingleOneReg(
800 iface, 0, 0, 31, 0b011001010110011010000110101101111
801 )
802 self.S1 = StatusSingleOneReg(iface, 8, 24, 30)
803 self.S2 = StatusSingleOneReg(iface, 5, 9, 17)
804 self.S3 = StatusSingleOneReg(iface, 4, 12, 23)
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805 self.SA = StatusArrayNInRegMInEndReg(iface, 9, 0, 8, 10, 4)
806 self.Counter = StatusSingleNRegs(iface, 12, 2, (31, 0), (0, 0))
807 self.C1 = ConfigSingleOneReg(iface, 6, 0, 6)
808 self.C2 = ConfigSingleOneReg(iface, 5, 0, 8)
809 self.C3 = ConfigSingleOneReg(iface, 4, 0, 11)
810 self.CA = ConfigArrayNInReg(iface, 1, 0, 8, 10, 4)
811 self.Mask = MaskSingleOneReg(iface, 7, 0, 15)
812 self.Subblock = self.SubblockClass(self.iface)
813
814 class SubblockClass:
815 def __init__(self, iface):
816 self.iface = iface
817 self.Add = ParamsAndReturnsProc(
818 iface,
819 24,
820 [
821 { 'Name': 'A', 'Width': 20, 'Access': {
822 'StartAddr': 24,
823 'StartBit': 0,
824 'EndBit': 19,
825 'RegCount': 1,
826 'Type': 'SingleOneReg', }, },
827 { 'Name': 'B', 'Width': 10, 'Access': {
828 'StartAddr': 24,
829 'StartBit': 20,
830 'EndBit': 29,
831 'RegCount': 1,
832 'Type': 'SingleOneReg', }, },
833 { 'Name': 'C', 'Width': 8, 'Access': {
834 'StartAddr': 24,
835 'StartBit': 30,
836 'EndBit': 5,
837 'RegCount': 2,
838 'Type': 'SingleNRegs', }, },
839 ],
840 25,
841 [
842 { 'Name': 'Sum', 'Access': {
843 'StartAddr': 25,
844 'StartBit': 6,
845 'EndBit': 26,
846 'RegCount': 1,
847 'Type': 'SingleOneReg', }, }
848 ],
849 None,
850 )
851 self.Add_Stream = Downstream(
852 iface,
853 26,
854 None,
855 [
856 { 'Name': 'A', 'Width': 20, 'Access': {
857 'StartAddr': 26,
858 'StartBit': 0,
859 'EndBit': 19,
860 'RegCount': 1,
861 'Type': 'SingleOneReg', }, },
862 {
863 'Name': 'B', 'Width': 10, 'Access': {
864 'StartAddr': 26,
865 'StartBit': 20,
866 'EndBit': 29,
867 'RegCount': 1,
868 'Type': 'SingleOneReg', }, },
869 { 'Name': 'C', 'Width': 8, 'Access': {
870 'StartAddr': 26,
871 'StartBit': 30,
872 'EndBit': 5,
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873 'RegCount': 2,
874 'Type': 'SingleNRegs', }, },
875 ],
876 )
877 self.Sum_Stream = Upstream(
878 iface,
879 28,
880 None,
881 [
882 { 'Name': 'Sum', 'Access': {
883 'StartAddr': 28,
884 'StartBit': 0,
885 'EndBit': 20,
886 'RegCount': 1,
887 'Type': 'SingleOneReg', }, }
888 ],
889 )
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E VHDL Main entity description gen-
erated for the example design

1 -- This file has been automatically generated by the vfbdb tool.
2 -- Do not edit it manually, unless you really know what you do.
3 -- https://github.com/Functional-Bus-Description-Language/go-vfbdb
4 library ieee;
5 use ieee.std_logic_1164.all;
6 use ieee.numeric_std.all;
7 library ltypes;
8 use ltypes.types.all;
9 library work;

10 use work.wb3.all;
11 package Main_pkg is
12 end package;
13 library ieee;
14 use ieee.std_logic_1164.all;
15 use ieee.numeric_std.all;
16 library general_cores;
17 use general_cores.wishbone_pkg.all;
18 library ltypes;
19 use ltypes.types.all;
20 library work;
21 use work.wb3.all;
22 use work.Main_pkg.all;
23
24 entity Main is
25 generic ( G_REGISTERED : boolean := true );
26 port (
27 clk_i : in std_logic;
28 rst_i : in std_logic;
29 slave_i : in t_wishbone_slave_in_array (1 - 1 downto 0);
30 slave_o : out t_wishbone_slave_out_array(1 - 1 downto 0);
31 Subblock_master_o : out t_wishbone_master_out_array(0 downto 0);
32 Subblock_master_i : in t_wishbone_master_in_array(0 downto 0);
33 Version_o : out std_logic_vector(23 downto 0) := x"010102";
34 ID_o : out std_logic_vector(31 downto 0) := x"cacd0d6f";
35 S1_i : in std_logic_vector(6 downto 0);
36 S2_i : in std_logic_vector(8 downto 0);
37 S3_i : in std_logic_vector(11 downto 0);
38 SA_i : in slv_vector(9 downto 0)(7 downto 0);
39 Counter_i : in std_logic_vector(32 downto 0);
40 C1_o : buffer std_logic_vector(6 downto 0);
41 C2_o : buffer std_logic_vector(8 downto 0);
42 C3_o : buffer std_logic_vector(11 downto 0);
43 CA_o : buffer slv_vector(9 downto 0)(7 downto 0);
44 Mask_o : buffer std_logic_vector(15 downto 0)
45 );
46 end entity;
47 architecture rtl of Main is
48 constant C_ADDRESSES : t_wishbone_address_array(1 downto 0) :=
49 (0 => "00000000000000000000000000000000", 1 => "00000000000000000000000000011000");
50 constant C_MASKS : t_wishbone_address_array(1 downto 0) :=
51 (0 => "00000000000000000000000000010000", 1 => "00000000000000000000000000011000");
52 signal master_out : t_wishbone_master_out;
53 signal master_in : t_wishbone_master_in;
54 signal Counter_atomic : std_logic_vector(32 downto 32);
55 begin
56 crossbar: entity general_cores.xwb_crossbar
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57 generic map (
58 G_NUM_MASTERS => 1,
59 G_NUM_SLAVES => 1 + 1,
60 G_REGISTERED => G_REGISTERED,
61 G_ADDRESS => C_ADDRESSES,
62 G_MASK => C_MASKS
63 ) port map (
64 clk_sys_i => clk_i,
65 rst_n_i => not rst_i,
66 slave_i => slave_i,
67 slave_o => slave_o,
68 master_i(0) => master_in,
69 master_i(1) => Subblock_master_i(0),
70 master_o(0) => master_out,
71 master_o(1) => Subblock_master_o(0)
72 );
73 register_access : process (clk_i) is
74 variable addr : natural range 0 to 14 - 1;
75 begin
76 if rising_edge(clk_i) then
77 -- Normal operation.
78 master_in.rty <= '0';
79 master_in.ack <= '0';
80 master_in.err <= '0';
81 transfer : if
82 master_out.cyc = '1'
83 and master_out.stb = '1'
84 and master_in.err = '0'
85 and master_in.rty = '0'
86 and master_in.ack = '0'
87 then
88 addr := to_integer(unsigned(master_out.adr(4 - 1 downto 0)));
89 -- First assume there is some kind of error.
90 -- For example internal address is invalid or there is a try to write status.
91 master_in.err <= '1';
92 -- '0' for security reasons, '-' can lead to the information leak.
93 master_in.dat <= (others => '0');
94 master_in.ack <= '0';
95 -- Registers Access
96 if 0 <= addr and addr <= 0 then
97 master_in.dat(31 downto 0) <= x"cacd0d6f"; -- ID
98 master_in.ack <= '1';
99 master_in.err <= '0';

100 end if;
101 if 1 <= addr and addr <= 2 then
102 for i in 0 to 3 loop
103 if master_out.we = '1' then
104 CA_o((addr-1)*4+i) <= master_out.dat(8*(i+1) + 0-1 downto 8*i + 0);
105 end if;
106 master_in.dat(8*(i+1) + 0-1 downto 8*i + 0) <= CA_o((addr-1)*4+i);
107 end loop;
108 master_in.ack <= '1';
109 master_in.err <= '0';
110 end if;
111 if 3 <= addr and addr <= 3 then
112 for i in 0 to 1 loop
113 if master_out.we = '1' then
114 CA_o(8+i) <= master_out.dat(8*(i+1) + 0-1 downto 8*i+0);
115 end if;
116 master_in.dat(8*(i+1) + 0-1 downto 8*i+0) <= CA_o(8+i);
117 end loop;
118 master_in.ack <= '1';
119 master_in.err <= '0';
120 end if;
121 if 4 <= addr and addr <= 4 then
122 master_in.dat(23 downto 12) <= S3_i;
123 if master_out.we = '1' then
124 C3_o <= master_out.dat(11 downto 0);
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125 end if;
126 master_in.dat(11 downto 0) <= C3_o;
127 master_in.ack <= '1';
128 master_in.err <= '0';
129 end if;
130 if 5 <= addr and addr <= 5 then
131 master_in.dat(17 downto 9) <= S2_i;
132 if master_out.we = '1' then
133 C2_o <= master_out.dat(8 downto 0);
134 end if;
135 master_in.dat(8 downto 0) <= C2_o;
136 master_in.ack <= '1';
137 master_in.err <= '0';
138 end if;
139 if 6 <= addr and addr <= 6 then
140 if master_out.we = '1' then
141 C1_o <= master_out.dat(6 downto 0);
142 end if;
143 master_in.dat(6 downto 0) <= C1_o;
144 master_in.ack <= '1';
145 master_in.err <= '0';
146 end if;
147 if 7 <= addr and addr <= 7 then
148 if master_out.we = '1' then
149 Mask_o <= master_out.dat(15 downto 0);
150 end if;
151 master_in.dat(15 downto 0) <= Mask_o;
152 master_in.ack <= '1';
153 master_in.err <= '0';
154 end if;
155 if 8 <= addr and addr <= 8 then
156 master_in.dat(23 downto 0) <= x"010102"; -- Version
157 master_in.dat(30 downto 24) <= S1_i;
158 master_in.ack <= '1';
159 master_in.err <= '0';
160 end if;
161 if 9 <= addr and addr <= 10 then
162 for i in 0 to 3 loop
163 master_in.dat(8*(i+1) + 0-1 downto 8*i + 0) <= SA_i((addr-9)*4+i);
164 end loop;
165 master_in.ack <= '1';
166 master_in.err <= '0';
167 end if;
168 if 11 <= addr and addr <= 11 then
169 for i in 0 to 1 loop
170 master_in.dat(8*(i+1) + 0-1 downto 8*i+0) <= SA_i(8+i);
171 end loop;
172 master_in.ack <= '1';
173 master_in.err <= '0';
174 end if;
175 if 12 <= addr and addr <= 12 then
176 Counter_atomic(32 downto 32) <= Counter_i(32 downto 32);
177 master_in.dat(31 downto 0) <= Counter_i(31 downto 0);
178 master_in.ack <= '1';
179 master_in.err <= '0';
180 end if;
181 if 13 <= addr and addr <= 13 then
182 master_in.dat(0 downto 0) <= Counter_atomic(32 downto 32);
183 master_in.ack <= '1';
184 master_in.err <= '0';
185 end if;
186 end if transfer;
187 if rst_i = '1' then
188 master_in <= C_DUMMY_WB_MASTER_IN;
189 end if;
190 end if;
191 end process register_access;
192 end architecture;
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F VHDL Subblock entity description
generated for the example design

1 -- This file has been automatically generated by the vfbdb tool.
2 -- Do not edit it manually, unless you really know what you do.
3 -- https://github.com/Functional-Bus-Description-Language/go-vfbdb
4 library ieee;
5 use ieee.std_logic_1164.all;
6 use ieee.numeric_std.all;
7 library ltypes;
8 use ltypes.types.all;
9 library work;

10 use work.wb3.all;
11
12 package Subblock_pkg is
13 type Add_out_t is record
14 A : std_logic_vector(19 downto 0);
15 B : std_logic_vector(9 downto 0);
16 C : std_logic_vector(7 downto 0);
17 call : std_logic;
18 exitt : std_logic;
19 end record;
20 type Add_in_t is record
21 Sum : std_logic_vector(20 downto 0);
22 end record;
23 type Add_Stream_t is record
24 A : std_logic_vector(19 downto 0);
25 B : std_logic_vector(9 downto 0);
26 C : std_logic_vector(7 downto 0);
27 end record;
28 type Sum_Stream_t is record
29 Sum : std_logic_vector(20 downto 0);
30 end record;
31 end package;
32
33 library ieee;
34 use ieee.std_logic_1164.all;
35 use ieee.numeric_std.all;
36 library general_cores;
37 use general_cores.wishbone_pkg.all;
38 library ltypes;
39 use ltypes.types.all;
40 library work;
41 use work.wb3.all;
42 use work.Subblock_pkg.all;
43
44 entity Subblock is
45 generic ( G_REGISTERED : boolean := true );
46 port (
47 clk_i : in std_logic;
48 rst_i : in std_logic;
49 slave_i : in t_wishbone_slave_in_array (1 - 1 downto 0);
50 slave_o : out t_wishbone_slave_out_array(1 - 1 downto 0);
51 Add_o : out Add_out_t;
52 Add_i : in Add_in_t;
53 Add_Stream_o : out Add_Stream_t;
54 Add_Stream_stb_o : out std_logic;
55 Sum_Stream_i : in Sum_Stream_t;
56 Sum_Stream_stb_o : out std_logic
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57 );
58 end entity;
59 architecture rtl of Subblock is
60 constant C_ADDRESSES : t_wishbone_address_array(0 downto 0) :=
61 (0 => "00000000000000000000000000000000");
62 constant C_MASKS : t_wishbone_address_array(0 downto 0) :=
63 (0 => "00000000000000000000000000000000");
64 signal master_out : t_wishbone_master_out;
65 signal master_in : t_wishbone_master_in;
66 begin
67 crossbar: entity general_cores.xwb_crossbar
68 generic map (
69 G_NUM_MASTERS => 1,
70 G_NUM_SLAVES => 0 + 1,
71 G_REGISTERED => G_REGISTERED,
72 G_ADDRESS => C_ADDRESSES,
73 G_MASK => C_MASKS
74 ) port map (
75 clk_sys_i => clk_i,
76 rst_n_i => not rst_i,
77 slave_i => slave_i,
78 slave_o => slave_o,
79 master_i(0) => master_in,
80 master_o(0) => master_out
81 );
82
83 register_access : process (clk_i) is
84 variable addr : natural range 0 to 5 - 1;
85 begin
86 if rising_edge(clk_i) then
87
88 -- Normal operation.
89 master_in.rty <= '0';
90 master_in.ack <= '0';
91 master_in.err <= '0';
92
93 -- Procs Calls Clear
94 Add_o.call <= '0';
95 -- Procs Exits Clear
96 Add_o.exitt <= '0';
97 -- Stream Strobes Clear
98 Add_Stream_stb_o <= '0';
99 Sum_Stream_stb_o <= '0';

100
101 transfer : if
102 master_out.cyc = '1'
103 and master_out.stb = '1'
104 and master_in.err = '0'
105 and master_in.rty = '0'
106 and master_in.ack = '0'
107 then
108 addr := to_integer(unsigned(master_out.adr(3 - 1 downto 0)));
109 -- First assume there is some kind of error.
110 -- For example internal address is invalid or there is a try to write status.
111 master_in.err <= '1';
112 -- '0' for security reasons, '-' can lead to the information leak.
113 master_in.dat <= (others => '0');
114 master_in.ack <= '0';
115 -- Registers Access
116 if 0 <= addr and addr <= 0 then
117 if master_out.we = '1' then
118 Add_o.A <= master_out.dat(19 downto 0);
119 end if;
120 master_in.dat(19 downto 0) <= Add_o.A;
121 if master_out.we = '1' then
122 Add_o.B <= master_out.dat(29 downto 20);
123 end if;
124 master_in.dat(29 downto 20) <= Add_o.B;
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125 if master_out.we = '1' then
126 Add_o.C(1 downto 0) <= master_out.dat(31 downto 30);
127 end if;
128 master_in.dat(31 downto 30) <= Add_o.C(1 downto 0);
129 master_in.ack <= '1';
130 master_in.err <= '0';
131 end if;
132 if 1 <= addr and addr <= 1 then
133 if master_out.we = '1' then
134 Add_o.C(7 downto 2) <= master_out.dat(5 downto 0);
135 end if;
136 master_in.dat(5 downto 0) <= Add_o.C(7 downto 2);
137 master_in.dat(26 downto 6) <= Add_i.Sum;
138 master_in.ack <= '1';
139 master_in.err <= '0';
140 end if;
141 if 2 <= addr and addr <= 2 then
142 if master_out.we = '1' then
143 Add_Stream_o.A <= master_out.dat(19 downto 0);
144 end if;
145 if master_out.we = '1' then
146 Add_Stream_o.B <= master_out.dat(29 downto 20);
147 end if;
148 if master_out.we = '1' then
149 Add_Stream_o.C(1 downto 0) <= master_out.dat(31 downto 30);
150 end if;
151 master_in.ack <= '1';
152 master_in.err <= '0';
153 end if;
154 if 3 <= addr and addr <= 3 then
155 if master_out.we = '1' then
156 Add_Stream_o.C(7 downto 2) <= master_out.dat(5 downto 0);
157 end if;
158 master_in.ack <= '1';
159 master_in.err <= '0';
160 end if;
161 if 4 <= addr and addr <= 4 then
162 master_in.dat(20 downto 0) <= Sum_Stream_i.Sum;
163 master_in.ack <= '1';
164 master_in.err <= '0';
165 end if;
166 Add_call : if addr = 1 then
167 if master_out.we = '1' then
168 Add_o.call <= '1';
169 end if;
170 end if;
171 Add_exit : if addr = 1 then
172 if master_out.we = '0' then
173 Add_o.exitt <= '1';
174 end if;
175 end if;
176 Add_Stream_stb : if addr = 3 then
177 if master_out.we = '1' then
178 Add_Stream_stb_o <= '1';
179 end if;
180 end if;
181 Sum_Stream_stb : if addr = 4 then
182 if master_out.we = '0' then
183 Sum_Stream_stb_o <= '1';
184 end if;
185 end if;
186 end if transfer;
187 if rst_i = '1' then
188 master_in <= C_DUMMY_WB_MASTER_IN;
189 end if;
190 end if;
191 end process register_access;
192 end architecture;

165



G Statement from the Fluence
company

166





H FBDL Specification

168



Functional Bus Description Language

Revision 1.0

26 January 2024

Abstract

This document is the official specification of the Functional Bus Description Language. Its primary pur-
pose is to define the syntax and semantics of the language. Functional Bus Description Language is a do-
main-specific language for bus and register management. Its main characteristic is the paradigm shift
from the register-centric approach to the functionality-centric approach. In the register-centric approach,
the user defines registers and then manually lays out the data into the registers. In the functionality-cen-
tric approach, the user defines the functionality of the data, and the registers, module hierarchy, and access
codes are later automatically inferred. By defining the functionality of the data placed in the registers, it
is possible to generate more code, increase code robustness, improve system design readability, and
shorten the implementation process.
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Glossary

Not all terms defined in the glossary list are used in the specification. Some of them are formally defined because
they are helpful when discussing, for example, compiler implementation.

call register
The call register term is used to refer to the proc register with the associated call pulse signal. When the call
register is written, the call pulse is generated.

data
The data term is used to refer to the content of the registers. Unless it is used in the context of internal data types
of the language.

downstream
The downstream is a stream from the requester to the provider.

exit register
The exit register term is used to refer to the proc register with the associated exit pulse signal. When the exit
register is read, the exit pulse is generated.

functionality
The functionality is the functionality of given data. It can be seen as a type of the data. In case of functionalities
encapsulating other functionalities, such as bus, block, proc or stream, the functionality is used to denote a
broader context of encapsulated data.

gap
The gap term is used to refer to unused bits within register.

gateware
The gateware term is used to refer to the overall configuration of the logic placed in the FPGA to make it behave
according to the desired description. The term is not formally defined anywhere, however it is used to unburden
the firmware term.  IEEE Std 610.12-1990 also mentions that the firmware term is too overloaded and confusing.

generator
The generator term is used to refer to the part of a compiler directly responsible for the target code generation
based on registerification results.

information
The information term is used to refer to the metadata on the functionality data. The metadata describes where
the data is located, for example bit masks and register addresses, and how to access the data.

means
The means term is used to refer to the automatically generated method or data that shall be used by the requester
to request particular functionality. A means in particular programming language is usually a function, method or
procedure that shall be called or class, dictionary, map or structure containing information on how to access par-
ticular functionality.

provider
The provider is the system component containing the generated registers and providing described functionalities.

pure call register
The term pure call register is used to refer to the call register containing no proc returns.

pure exit register
The term pure exit register is used to refer to the exit register containing no proc params.
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registerification
The registerification is the process of placing data of functionalities into the registers. The process includes as-
signing data bit masks, register addresses as well as block addresses and masks. The term is new in the field and
is coined in the specification.

requester
The requester is the system component accessing the generated registers and requesting described functionalities.

strobe register
The strobe register term is used to refer to the stream register with the associated strobe pulse signal. When
the strobe register is written (downstream), or read (upstream) the strobe pulse is generated.

target
The target term is used to refer to the transpilation target. For example, a target can be a requester Python code
allowing to access functionalities of the provider in an asynchronous fashion. A VHDL code providing descrip-
tion of the functionality registers and exposing AXI compliant interface is a valid provider target. A JSON file
describing registerification results is for example a valid documentation target. The target depends on several
factors, but the most important ones are programming/description language, synchronous or asynchronous access
interface, bus type, dynamic or static address map reloading. Each target has its recipient. It is either provider,
requester or documentation.

upstream
The upstream is a stream from the provider to the requester.
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1. Overview

1.1. Scope
This document specifies the syntax and semantics of the Functional Bus Description Language (FBDL).

1.2. Purpose
This document is intended for the implementers of tools supporting the language and for users of the language. The
focus is on defining the valid language constructs, their meanings and implications for the hardware and software
that is specified or configured, how compliant tools are required to behave, and how to use the language.

1.3. Motivation
Describing and managing registers can be a tedious and error-prone task. The information about registers is utilized
by software, hardware, and verification engineers. Typically a specification of the registers is designed by the hard-
ware designer or system architect. During the design and implementation phases, it changes multiple times due to
different reasons such as bugs, requirement changes, technical limitations, or user feedback. A simple change in a
single register may imply adjustments in both hardware and software. These adjustments cost money and time.

Several formal and informal tools exist to address issues related to register management. However, they all share the
same concept of describing registers at a very low level. That is, the user has to implicitly define the layout of the
registers. For example, in the case of a register containing multiple statuses, its the user responsibility to specify the
bit position for every status.

The FBDL is different in this term. The user specifies the functionalities that must be provided by the data stored in
the registers. The register layout is automatically generated based on the functional requirements. Such an approach
increases the amount of automatically generated hardware description and software code and decreases the amount
of code requiring manual implementation compared to the register-centric approach. Not only the register masks,
addresses, and single read and write functions can be generated, but complete custom functions with optimized ac-
cess methods.  This, in turn, leads to shorter design iterations and fewer bugs.

1.4. Word usage
The terms "must", "must not", "required", "shall", "shall not", "should", "should not", "recommended", "may", and
"optional" in this document are to be interpreted as described in the IETF Best Practices Document 14, RFC 2119.1.

1.5. Syntactic description
The formal syntax of the FBDL is described by means of context-free syntax using a simple variant of the Backus-
Naur Form (BNF).  In particular:

a) Lowercase words in constant-width font, some containing embedded underscores, are used to denote
syntactic categories, for example:

single_import_statement

Whenever the name of a syntactic category is used, apart from the syntax rules themselves, underscores are re-
placed with spaces thus, "single import statement" would appear in the narrative description when referring to
the syntactic category.

b) Boldface words are used to denote keywords, for example:

mask

Keywords shall be used only in those places indicated by the syntax.
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c) A production consists of a left-hand side, the symbol "::=" (which is read as can be replaced by), and a right-
hand side. The left-hand side of a production is always a syntactic category, the right-hand side is a replace-
ment rule. The meaning of a production is a textual-replacement rule. Any occurrence of the left-hand side
may be replaced by an instance of the right-hand side.

d) A vertical bar ( | ) separates alternative items on the right-hand side of a production unless it occurs immedi-
ately after an opening brace, in which case it stands for itself, for example:

decimal_digit ::= zero_digit | non_zero_decimal_digit
choices ::= choice { | choice }

In the first instance, an occurrence of decimal digit can be replaced by either zero digit or non zero decimal
digit. In the second case, "choices" can be replaced by a list of "choice", separated by vertical bars, see item f)
for the meaning of braces.

e) Square brackets [ ] enclose optional items on the right-hand side of a production. Note, however, sometimes
square brackets in the right-hand side of the production are part of the syntax.  In such cases bold font is used.

f) Braces { } enclose a repeated item or items on the right-hand side of a production. The items may appear zero
or more times.

g) The term declared identifier is used for any occurrence of an identifier that already denotes some declared
item (declared by a user or by specification, for example built-in function name).
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2. References
The following referenced documents are indispensable for the application of this document (i.e., they must be under-
stood and used, so each referenced document is cited in the text and its relationship to this document is explained).
For dated references, only the edition cited applies. For undated references, the latest edition of the referenced docu-
ment (including any amendments or corrigenda) applies.

• IETF Best Practices Document 14, RFC 2119,

• IETF UTF-8, a transformation format of ISO 10646, RFC 3629,

• IEEE Std 754™-2019, IEEE Standard for Floating-Point Arithmetic.
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3. Concepts
The core concept behind the FBDL is based on the fact that if there is a system part with the registers that can be ac-
cessed, then there is at least one more system part accessing these registers. The part accessing the registers is called
the requester. The part containing the registers is called the provider, as it provides functions via particular func-
tionalities.

The code generated from the FBDL description can be conceptually divided into two parts, the requester part and the
provider part. The requester code usually refers to the generated software or firmware implemented in typical pro-
gramming languages such as: Ada, C, C++, Go, Java, Python, Rust etc. The provider code usually refers to the gen-
erated gateware or hardware implemented in hardware description languages or frameworks such as: VHDL, Sys-
temVerilog, SystemC, Bluespec, PipelineC, MyHDL, Chisel etc. However, implementing the provider for example
as a firmware, using the C language and a microcontroller, is practically doable and valid.

The description of functionalities shall be placed in files with .fbd extension. By default, the bus named Main is
the entry point for the description used for the code generation. A compiler is free to support a parameter for chang-
ing the name of the main bus.

description ::=
import_statement |
constant_definition |
type_definition |
instantiation

3.1. Properties
Each data in the FBDL description has associated functionality and each functionality has associated properties.
Properties allow the configuration of functionalities. Each property must have a concrete type. The default value of
each property is specified in the round brackets () in the functionality subsections. If the default value is bus
width, then the default value equals the actual value of the bus width property. If the default value is unini-
tialized, then it shall be represented as the uninitialized meta value at the provider side. If the target language
for the provider code does not have a concept of uninitialized value, then values such as 0, Null, None, nil etc.
shall be used.

Each property either defines or declares functionality feature or behavior. Definitive properties specify the desired
behavior of the automatically generated code. They specify elements directly managed by the FBDL. Examples of
definitive properties include atomic or width properties. Declarative properties describe the behavior of external
elements that automatically generated code only interacts with. Declarative properties are required to generate valid
logic, and it is the user’s responsibility to make sure their values match the behavior of external components. Exam-
ples of declarative properties include access or in-trigger properties.

property_assignment ::= property_identifier = expression

property_assignments ::=
property_assignment
{ ; property_assignment }
newline

semicolon_and_property_assignments ::= ; property_assignments

property_identifier ::=
access | add-enable | atomic | byte-write-enable | clear | delay |
enable-init-value | enable-reset-value | groups | init-value |
in-trigger | masters | out-trigger | range | read-latency |
read-value | reset | reset-value | size | width
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3.2. Instantiation

A functionality can be instantiated in a single line or in multiple lines.

instantiation ::= single_line_instantiation | multi_line_instantiation

single_line_instantiation ::=
identifier
[ array_marker ]
declared_identifier | qualified_identifier
[ argument_list ]
newline | semicolon_and_property_assignments

multi_line_instantiation ::=
identifier
[ array_marker ]
declared_identifier | qualified_identifier
[ argument_list ]
functionality_body

array_marker ::= [ expression ]

functionality_body ::=
newline
indent
{

constant_definition |
type_definition |
property_assignments |
instantiation

}
dedent

Following code shows examples of single line instantiations:

C config
C config; width = 8
M [8]mask; atomic = false; width = 128; init-value = 0
err error_t(48); atomic = false

3.3. Addressing
The FBDL specification does not impose byte or word addressing. There is also no property allowing to switch be-
tween these two addressing modes. The addressing mode handling is completely left to the particular compiler im-
plementation. If the compiler has a monolithic structure (no distinction between the compiler frontend and back-
end), then it is probably the best decision to use the addressing mode used by the target bus (for example, byte ad-
dressing for AXI or word addressing for Wishbone). Another option is providing a compiler flag or parameter to
specify the addressing mode during the compiler call. However, in the case of a compiler frontend implementation,
it is recommended to use word addressing with a word width equal to the bus width. As it is not known whether the
compiler backend will use the word or byte addressing, using the word addressing in the compiler frontend is usu-
ally a more straightforward approach, as the byte addresses are word addresses multiplied by the number of bytes in
the single word.
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3.4. Positive logic
The FBDL uses only positive logic. An active level in positive logic is a high level (binary 1), and an active edge is
a rising edge (transition from low level to high level, from binary 0 to binary 1). It does not mean that FBDL cannot
be used with external components using negative logic. To connect external negative logic components to the gener-
ated FBDL positive logic components, one shall negate the signals at the interface connection level. Supporting
both positive and negative logic would unnecessarily complex the language and would create a second way for solv-
ing the same problem making the set of possible solutions non-orthogonal.

3.5. Domain-specific language
The FBDL is a domain-specific language with its own syntax. Some of the register-centric tools are built on top of
standard file formats or markup languages such as JSON, TOML, XML or YAML. Such an approach allows for fast
prototyping and has a lower entry threshold. However, it becomes a burden when more conceptually advanced fea-
tures, for example parametrization, have to be supported. The description quickly begins to gain in volume, and the
overall feeling is it is needlessly verbose. What is more, having its own adjusted language syntax allows for more
informative compiler error messages.
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4. Lexical elements
FBDL has following types of lexical tokens:

• comment,

• identifier,

• indent,

• keyword,

• literal,

• newline.

4.1. Comments
There is only a single type of comment, a single-line comment. A single-line comment starts with the ’#’ character
and extends up to the end of the line. A single-line comment can appear on any line of an FBDL file and may con-
tain any character, including glyphs and special characters. The presence or absence of comments has no influence
on whether a description is legal or illegal. Their sole purpose is to enlighten the human reader.

4.1.1. Documentation comments

Documentation comments are comments that appear immediately before constant definitions, type definitions, and
functionality instantiations with no intervening newlines. The following code shows examples of documentation
comments:

# Number of receivers
const RECEIVERS_COUNT = 7
Main bus

# Data receivers
Receivers [RECEIVERS_COUNT]block

# 0 disable receiver, 1 enable receiver
Enable config; width = 1
# Number of frames in the buffer
Frame_Count status
# Read_Frame reads single data frame
Read_Frame proc

data [4]return; width = 8

4.2. Identifiers
Identifiers are used as names.  An identifier shall start with a letter.

uppercase_letter ::= A | B | C | D | E | F | G | H | I | J | K | L | M |
N | O | P | R | S | T | U | V | W | X | Y | Z

lowercase_letter ::= a | b | c | d | e | f | g | h | i | j | k | l | m |
n | o | p | r | s | t | u | v | w | x | y | z

letter ::= uppercase_letter | lowercase_letter

letter_or_digit ::= letter | decimal_digit

identifier ::= letter { underscore | letter_or_digit }
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Following code contains some valid and invalid identifiers.

const C_20 = 20 # Valid
const _C20 = 20 # Invalid
Main bus

cfg1 config # Valid
1cfg config # Invalid

4.2.1. Declared identifier

Declared identifier is used for any occurrence of an identifier that already denotes some declared item.

declared_identifier ::= letter { underscore | letter_or_digit }

4.2.2. Qualified identifier

The qualified identifier is used to reference a symbol from foreign package.

qualified_identifier ::= declared_identifier.declared_identifier

The first declared identifier denotes the package, and the second one denotes the symbol from this package.

4.3. Indent
The indentation has semantics meaning in the FBDL. There is only a single indent character, the horizontal tab
(U+0009). It is hard to express the indent and dedent using BNF. Ident is the increase of the indentation level, and
dedent is the decrease of the indentation level. In the following code the indent happens in the lines number 2, 5 and
7, and the dedent happens in the line number 4. What is more, double dedent happens at the EOF. The number of
indents always equals the number of dedents in the syntactically and semantically correct file.

1: type cfg_t config
2: atomic = false
3: width = 64
4: Main bus
5: C cfg_t
6: Blk block
7: C cfg_t
8: S status

Not only the indent alignment is important, but also its level. In the following code the first type definition is cor-
rect, as the indent level for the definition body is increased by one. The second type definition is incorrect, even
though the indent within the definition body is aligned, as the indent level is increased by two.

# Valid indent
type cfg1_t config

atomic = false
width = 8

# Invalid indent, indent increased by two
type cfg2_t config

atomic = false
width = 8

4.4. Keywords
FBDL has following keywords: atomic, block, bus, clear, config, const, doc, false, import, init-value, irq, mask,
memory, param, proc, range, reset, read-value, reset-value, return, static, stream, true, type, in-trigger, out-
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trigger.

Keywords can be used as identifiers with one exception. Keywords denoting built-in types (functionalities) cannot
be used as identifiers for custom types.

4.5. Literals

4.5.1. Bool literals

bool_literal ::= false | true

4.5.2. Number literals

underscore ::= _

zero_digit ::= 0

non_zero_decimal_digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

decimal_digit ::= zero_digit | non_zero_decimal_digit

binary_base ::= 0B | 0b

binary_digit ::= 0 | 1

octal_base ::= 0O | 0o

octal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

hex_base ::= 0X | 0x

hex_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
A | a | B | b | C | c | D | d | E | e | F | f

4.5.3. Integer literals

integer_literal ::=
binary_literal |
octal_literal |
decimal_literal |
hex_literal

binary_literal ::= binary_base binary_digit {[underscore] binary_digit}

octal_literal ::= octal_base octal_digit {[underscore] octal_digit}

decimal_literal ::= non_zero_decimal_digit {[underscore] decimal_digit}

hex_literal ::= hex_base hex_digit {[underscore] hex_digit}

4.5.4. Real literals

The real literals shall be represented as described by IEEE Std 754, an IEEE standard for double-precision floating-
point numbers.
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Real numbers can be specified in either decimal notation (for example, 17.83) or in scientific notation (for example,
13e8, which indicates 13 multiplied by 10 to the eighth power). Real numbers expressed with a decimal point shall
have at least one digit on each side of the decimal point.

4.5.5. String literals

A string literal is a sequence of zero or more UTF-8 characters enclosed by double quotes ("").

string_literal ::= "{UTF-8 character}"

4.5.6. Bit string literals

A bit string literal is a sequence of zero or more digit or meta value characters enclosed by double quotes ("") and
preceded by a base specifier. The meta value characters are supported because of hardware description languages,
that also have a concept of metalogical values.

meta_character ::=  - | U | W | X | Z

The meta characters have following meaning:

• ’-’ - don’t care,

• ’U’ - uninitialized,

• ’W’ - weak unknown,

• ’X’ - unkown,

• ’Z’ - high-impedance state.

binary_or_meta ::= binary_digit | meta_character

octal_or_meta ::= octal_digit | meta_character

hex_or_meta ::= hex_digit | meta_character

There are three types of bit string literals: binary bit string literal, octal bit string literal and hex bit stirng literal.

bit_string_literal ::=
binary_bit_string_literal |
octal_bit_string_literal |
hex_bit_string_literal

binary_bit_string_base = B | b

binary_bit_string_literal = binary_bit_string_base "{binary_or_meta}"

octal_bit_string_base = O | o

octal_bit_string_literal = octal_bit_string_base "{octal_or_meta}"

hex_bit_string_base = X | x

hex_bit_string_literal = hex_bit_string_base "{hex_or_meta}"

If meta value is present in a bit string literal, then it is expanded to the proper width depending on the bit string base.
For example, following equations are true:
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o"XW" = b"XXXWWW"
x"U-" = b"UUUU----"

4.5.7. Time literals

A time literal is a sequence of integer literal and a time unit.

time_unit ::= ns | us | ms | s

time_literal ::= integer_literal time_unit

Time literals are used to create values of time data type, required for example by the delay property.
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5. Data types
There are 6 data types in FBDL:

• bit string,

• bool,

• integer,

• real,

• string,

• time.

Types are implicit and are not declared. The type of the value evaluated from an expression must be checked before
any assignment or comparison. If there is a type mismatch that can be resolved with implicit rules, then it shall be
resolved. In case of a type mismatch that cannot be resolved, an error must be reported by the compiler.

Conversion from bool to integer in expressions is implicit. Conversion from integer to real in expressions is implicit.
Conversion from real to integer can be implicit if there is no fractional part. If fractional part is present, then conver-
sion from real to integer must be explicit and must be done by calling any function returning integer type, for exam-
ple ceil(), floor().

The below picture presents a graph of possible implicit conversions between different data types.

Bool

Bit
string

Integer Real
Always (false -> 0, true -> 1)

Always

Always

Only if no fractional part

5.1. Bit string
The value of the bit string type is used for all *-value properties. It might be created explicitly using the bit string
literal or it might be converted implicitly from the value of integer type. The only way to create a bit string value
containing meta values is to explicitly use the bit string literal.

The below table presents unary negation operation results applied to possible bit string data type values.

Bit string unary bitwise negation

In Value             Out Value
0 1
1 0
- -
U U
W W
X X
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Z Z

Below tables present binary operation results applied to possible bit string data type values.

Bit string binary bitwise and (&) resolution      

Operands 0 1 - U W X Z

0 0 0 0 U 0 X 0

1 0 1 1 U 1 X 1

- 0 1 - U W X Z

U U U U U U U U

W 0 1 X U W X W

X X X X U X X X

Z 0 1 X U W X Z

Bit string binary bitwise or (|) resolution       

Operands 0 1 - U W X Z

0 0 1 0 U 0 X 0

1 1 1 1 U 1 X 1

- 0 1 - U W X Z

U U U U U U U U

W 0 1 X U W X W

X X X X U X X X

Z 0 1 X U W X Z

Bit string binary bitwise xor (ˆ) resolution      

Operands 0 1 - U W X Z

0 0 1 0 U 0 X 0

1 1 0 1 U 1 X 1

- 0 1 - U W X Z

U U U U U U U U

W 0 1 X U W X W

X X X X U X X X

Z 0 1 X U W X Z

5.2. Bool
The value of the bool type can be created explicitly using true or false literals. The value of the bool type shall
be implicitly converted to the value of the integer type in places where the value of the integer type is required. The
boolean false value shall be converted to the integer value 0. The boolean true value shall be converted to the
integer value 1.  In the following example, the value of I1 evaluates to 1, and the value of I2 evaluates to 2.

const B0 = false
const B1 = true
const I1 = B0 + B1
const I2 = B1 + B1

The bool - integer conversion is asymmetric. Implicit conversion of a value of the integer type to a value of the bool
type is forbidden. This is becuase values of the bool type are often used to count the number of elements or to arbi-
trarily enable/disable an element generation. However, a value of the integer type appearing in a place where a value
of the bool type is required is usually a sign of a mistake. To convert a value of the integer type to a value of the
bool type the built-in bool() function must be called.



FBDL Specification                                                                     19                                                                                        Rev. 1.0

5.3. Integer
The integer data type is always signed integer and must be at least 64 bits wide.

5.4. Real
The real data type is 64 bits IEEE 754 double precision floating-point type.

5.5. String
The string data type can only be created explicitly using a string literal. The string data type is only used for setting
values of some properties, for example groups.

5.6. Time
The time data type is only used for assigning value to the properties expressed in time. The value of time type can
be created explicitly using the time literal. Values of time type can be added regardless of their time units. Values of
the time type can also be multiplied by values of the integer type.  All of the below property assignments are valid.

delay = 1 s + 1 ms + 1 us + 1 ns
delay = 5 * 60 s # Sleep for 5 minutes.
delay = 10 ms * 4 + 7 * 8 us
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6. Expressions
An expression is a formula that defines the computation of a value by applying operators and functions to operands.

expression ::=
bool_literal |
integer_literal |
real_literal |
string_literal |
bit_string_literal |
time_literal |
declared_identifier |
qualified_identifier |
unary_operation |
binary_operation |
function_call |
subscript |
parenthesized_expression |
expression_list

The function call is used to call one of built-in functions.

function_call ::=
declared_identifier( [ expression { , expression } ] )

The subscript is used to refer to a particular element from the expression list.

subscript ::= declared_identifier[ expression ]

The parenthesized expression may be used to explicitly set order of operations.

parenthesized_expression ::= ( expression )

The expression list may be used to create a list of expressions.

expression_list ::= [ [ expression { , expression } ] ]

6.1. Operators

6.1.1. Unary Operators

unary_operation ::= unary_operator expression

unary_operator ::= unary_arithmetic_operator | unary_bitwise_operator

unary_arithmetic_operator ::= -

unary_bitwise_operator ::= !

FBDL unary operators                         

Token     Operation    Operand Type     Result Type
- Opposite Integer Integer

Real Real

Bool Bool
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! Negation          Bit String           Bit String  
Integer Integer

6.1.2. Binary Operators

binary_operation ::= expression binary_operator expression

binary_operator ::=
binary_arithmetic_operator |
binary_comparison_operator |
binary_logical_operator |
binary_bitwise_operator

binary_arithmetic_operator ::= + | - | * | / | % | **

binary_comparison_operator ::= == | != | < | <= | > | >=

binary_logical_operator ::= && | ||

binary_bitwise_operator ::= << | >>

FBDL binary arithmetic operators                                           

Token         Operation        Left Operand Type   Right Operand Type    Result Type
Integer Integer Integer
Integer Real Real

+ Addition Real Integer Real
Real Real Real
Time Time Time

Integer Integer Integer
- Subtraction Integer Real Real

Real Integer Real
Real Real Real

Integer Integer Integer
Integer Real Real

* Multiplication Real Integer Real
Real Real Real

Integer Time Time
Time Integer Time

Integer Integer Real
\ Division Integer Real Real

Integer Real Real
Real Real Real

% Remainder Integer Integer Integer

Integer Integer Real
** Exponentiation Integer Real Real

Real Integer Real

FBDL binary comparison operators                                           

Token               Operator              Left Operand Type    Right Operand Type Result
Integer Integer Bool

== Equality Integer Real Bool
Real Integer Bool
Real Real Bool

Integer Integer Bool
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!= Nonequality Integer Real Bool
Real Integer Bool
Real Real Bool

Integer Integer Bool
< Less Than                         Integer Real Bool

Real Integer Bool
Real Real Bool

Integer Integer Bool
<= Less Than or Equal                 Integer Real Bool

Real Integer Bool
Real Real Bool

Integer Integer Bool
> Greater Than                      Integer Real Bool

Real Integer Bool
Real Real Bool

Integer Integer Bool
>= Greater Than or Equal               Integer Real Bool

Real Integer Bool
Real Real Bool

FBDL binary logical operators                                                     

Token                     Operator                    Left Operand Type    Right Operand Type Result
&& Short-circuiting logical AND                 Bool                              Bool                    Bool 

|| Short-circuiting logical OR                  Bool                              Bool                    Bool 

FBDL binary bitwise operators                                          

Token      Operator     Left Operand Type   Right Operand Type   Result Type
<< Left Shift                Integer Integer Integer

>> Right Shift               Integer Integer Integer

& And                  Bit String                     Bit String                Bit String 
Integer Integer Integer

| Or                    Bit String                     Bit String                Bit String 
Integer Integer Integer

ˆ Xor                   Bit String                     Bit String                Bit String 
Integer Integer Integer

The bool data type is not valid operand type for the most of the binary operations. However, as there is the rule for
implicit conversion from the bool data type to the integer data type, all operations accepting the integer operands
work also for the bool operands.

6.2. Functions
The FBDL does not allow defining custom functions for value computations. However, FBDL has following built-in
functions:

abs(x integer|real) integer|real
The abs function returns the absolute value of x.

bool(x integer) bool
The bool function returns a value of the bool type converted from a value x of the integer type. If x equals 0,
then the false is returned. In all other cases the true is returned.

ceil(x float) integer
The ceil function returns the least integer value greater than or equal to x.
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floor(x float) integer
The floor function returns the greatest integer value less than or equal to .

log2(x float) integer|float
The log2 returns the binary logarithm of x.

log10(x float) integer|float
The log10 returns the decimal logarithm of x.

log(x, b float) integer|float
The log function returns the logarithm of x to the base b.

u2(x, w integer) integer
The u2 function returns two’s complement representation of x as an integer assuming width w. For example
u2(-1, 8) returns 255.
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7. Functionalities
Functionalities are the core part of the FBDL. They define the capabilities of the provider. Each functionality is dis-
tinct and unambiguously defines the provider behavior and the interface that must be generated for the requester.
There are following 12 functionalities:

1) blackbox,

2) block,

3) bus,

4) config,

5) irq,

6) mask,

7) memory,

8) param,

9) proc,

10) return,

11) static,

12) status,

13) stream.

7.1. Blackbox
The blackbox functionality is used to incorporate blocks implemented manually or generated by external tools.
For example, a user may want to explicitly manage some particular registers’ layouts. In such a case, a register-cen-
tric tool might be used, and the generated block can be incorporated into the wrapping functionality-centric descrip-
tion using the blackbox functionality.

The blackbox functionality has following properties:

size integer (obligatory)
The size property defines size of the blackbox in the number of words with width equal to the width prop-
erty value of the block in which blackbox is defined.

The code generated for the requester should not provide any means for accessing the blackbox. The code gener-
ated for the provider must provide a means to connect the blackbox to the remaining part of the bus generated by
an FBDL compiler.

7.2. Block
The block functionality is used to logically group or encapsulate functionalities. The block is usually used to
separate functionalities related to particular peripherals such as UART, I2C transceivers, timers, ADCs, DACs etc.
The block might also be used to limit the access for particular provider to only a subset of functionalities.

The block functionality has following properties:

masters integer (1)
The masters property defines the number of block masters.

reset string (None)
The reset property defines the block reset type. By default the block has no reset. Valid values of the re-
set property are "Sync" for synchronous reset and "Async" for asynchronous reset.
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The following example presents how to limit the scope of access for particular requester.

Main bus
C config
Blk block

masters = 2
S status

The logical connection of the system components may look as follows:

Requester 1 Master 1 Crossbar 1

Slave 1

C

Crossbar 2

S

Slave 2

Master 2

Requester 2

Provider
Blk

The requester number 1 can acces both config C and status S. However, the requester number 2 can access only the
status S.

7.3. Bus
The bus functionality represents the bus structure. Every valid description must have at least one bus instantiated,
as the bus is the entry point for the description used for the code generation.

The bus functionality has following properties:

masters integer (1)
The masters property defines the number of bus masters.

reset string (None)
The reset property defines the bus reset type. By default the bus has no reset. Valid values of the reset
property are "Sync" for synchronous reset and "Async" for asynchronous reset.

width integer (32)
The width property defines the bus data width.

The bus address width is not explicitly set, as it implies from the address space size needed to pack all functionalities
included in the  Main bus description.

7.4. Config
The config functionality represents configuration data. The configuration data is data that is automatically read by
the provider from its registers. As the config is automatically read by the provider, there is no need for an
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additional signal associated with the config, indicating the config write by the requester. By default, a config can
be written and read by the requester.

The config functionality has following properties:

atomic bool (true)
The atomic property defines whether an access to the config must be atomic. If atomic is true, then the
provider must guarantee that any change of the config value, triggered by the requester write, is seen as an
atomic change by the other modules of the provider. This is especially important when the config spans more
than single register, as in case of single register write the change is always atomic.

groups string | [string] (None)
The groups property defines the groups the config belongs to. In case of a single group, the value can be a
string. In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the
grouping section.

init-value bit string | integer (uninitialized)
The init-value property defines the initial value of the config.

range integer | [integer] (None)
The range property defines the range of valid values. If the range value is of integer type then, the valid
range is from 0 to the value, including the value. If the range value is an integer list, then it must have even
number of elements. Odd elements specify lower bounds of the subranges and even elements specify upper
bounds of the subranges. For instance, range = [1, 3, 7, 8] means that the valid values are: 1, 2, 3, 7
and 8. Range bound values shall not be negative. This is because the FBDL makes no assumptions on the nega-
tive values encoding. To accomplish negative range checks functions such as u2 must be explicitly called. For
example, following assignment limits the possible range from -16 to -8: range = [u2(-8, 8), u2(-16,
8)]. The range property shall not be explicitly set if the width property is already set. If the range prop-
erty is not set, then the actual range implies from the width property. The code generated for the provider is
not required to check or report if the value provided for the config write is within the valid range. The recom-
mended way is to implement compiler parameter allowing enabling/disabling range check generation.

read-value bit string | integer (None)
The read-value property defines the value returned by the provider on the config read. If the read-value
is not set, then the provider must return the actual value of the config.

reset-value bit string | integer (None)
The reset-value property defines the value of the config after the reset. If the reset-value is set, but a
bus or block containing the config is not resettable (reset = None), then the compiler shall report an
error.

width integer (bus width)
The width property defines the bit width of the config. The width property shall not be explicitly set if the
range property is already set.

The code generated for the requester must provide means for writing and reading the config.

7.5. Irq
The irq functionality represents an interrupt handling. The irq functionality allows for automatic connection of
the following interrupt producers (in-trigger) and consumers (out-trigger):

1) edge producer and edge sensitive consumer,

Irq Producer Generated Logic Irq Consumer

Edge Edge
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2) edge producer and level sensitive consumer,

Irq Producer Generated Logic Irq Consumer

Edge Level

Clear On Read / Explicit Clear

3) level producer and edge sensitive consumer,

Irq Producer Generated Logic Irq Consumer

Level
Edge

Auto Clear

4) level producer and level sensitive consumer.

Irq Producer Generated Logic Irq Consumer

Level
Level

Clear On Read / Explicit Clear
Clear

The irq functionality has following properties:

add-enable bool (false)
The add-enable property defines whether an interrupt has associated enable bit in the interrupt enable regis-
ter. The enable can be used to mask the interrupt.

clear string ("Explicit")
The clear property defines how particular interrupt flag is cleared. The clear property is valid only in case
of level-triggered interrupt consumer. If clear property is set for edge-triggered interrupt consumer a compiler
shall shall report an error. Valid values are "Explicit" and "On Read". The "Explicit" clear requires
compiler to generate a means that must be explicitly used to clear the interrupt flag. The "On Read" clear re-
quires the provider to clear the interrupt flag on each interrupt flag read.

enable-init-value bit string | integer (uninitializd)
The enable-init-value property defines the initial value of the enable bit in the interrupt enable register.
The value must not exceed one bit. If add-enable is false and enable-init-value is set, then a com-
piler must report an error.

enable-reset-value bit string | integer (uninitializd)
The enable-reset-value property defines the value of the enable bit in the interrupt enable register after
the reset. The value must not exceed one bit. If add-enable is false and enable-reset-value is set,
then a compiler must report an error. If the enable-reset-value is set, but a bus or block containing
the irq is not resettable (reset = None), then the compiler shall report an error.

groups string | [string] (None)
The groups property defines the group for irq. Each irq must belong at most to one group. Interrupt groups
are described in irq grouping subsection.

in-trigger string ("Level")
The in-trigger property declares the interrupt producer type of trigger. Valid values are "Edge" and
"Level". It is up to the user to make sure declared trigger is coherent with the actual producer behavior. A
mismatch may lead to incorrect behavior.

out-trigger string ("Level")
The out-trigger property declares the interrupt consumer type of trigger. Valid values are "Edge" and



Rev. 1.0                                                                                        28                                                                     FBDL Specification

"Level". It is up to the user to make sure declared trigger is coherent with the actual consumer requirement.
A mismatch may lead to incorrect behavior.

7.6. Mask
The mask functionality represents a bit mask. The mask is data that is automatically read by the provider from its
registers. By default, a mask can be written and read by the requester. The mask is very similar to the config.
The difference is that the config is value-oriented, whereas the mask is bit-oriented. From the provider’s perspec-
tive the mask and the config are the same. From the requester’s perspective the code generated for interacting with
the mask and the config is different.

The mask functionality has following properties:

atomic bool (true)
The atomic property defines whether an access to the mask must be atomic. If atomic is true, then the provider
must guarantee that any change of the mask value, triggered by the requester write, is seen as an atomic change
by the other modules of the provider. This is especially important when the mask spans more than single regis-
ter, as in case of single register write the change is always atomic.

init-value bit string | integer (uninitialized)
The init-value property defines the initial value of the mask.

read-value bit string | integer (None)
The read-value property defines the value returned by the provider on the mask read. If the read-value
is not set, then the provider must return the actual value of the mask.

reset-value bit string | integer (None)
The reset-value property defines the value of the mask after the reset. If the reset-value is set, but a
bus or block containing the mask is not resettable (reset = None), then the compiler shall report an error.

width integer (bus width)
The width property defines the bit width of the mask.

The code generated for the requester must provide means for setting, clearing and updating particular bits of the
mask. The updating includes setting, clearing and toggling. The set differs from the update set. The set sets partic-
ular bits and simultaneously clears all remaining bits. The update set sets particular bits and keeps the value of the
remaining bits. The clear differs from the update clear in an analogous way. The toggle always works on provided
bits leaving the remaining bits untouched.

7.7. Memory
The memory functionality is used to directly connect and map an external memory to the generated bus address
space. A memory can also be connected to the bus using the proc or stream functionality. However, using the
memory functionality usually leads to greater throughput, but increases the size of the generated address space.

The memory functionality has following properties:

access string ("Read Write")
The access property declares the valid access permissions to the memory for the requester. Valid values of the
access property are: "Read Write", "Read Only", "Write Only".

byte-write-enable bool (false)
The byte-write-enable property declares byte-enable writes, that update the memory on contents on a
byte-to-byte basis. If the byte-write-enable property is explicitly set by a user, and a memory access is
"Read Only", then a compiler shall report an error.

read-latency integer (obligatory if access supports read)
The read-latency property declares the read latency in the number of clock cycles. It is required, if a mem-
ory supports read access, to correcly implement read logic.
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size integer (obligatory)
The size property declares the memory size. The size is in the number of memory words with width equal
to the memory width property value.

width integer (bus width)
The width property declares the memory data width.

The code generated for the requester must provide means for single read/write and block read/write transactions.
Whether access means for vectored (scatter-gather) transactions are automatically generated is up to the compiler. If
memory is read-only or write-only, then an unsupported write or read access code is recommended not to be gener-
ated.

7.8. Param
The param functionality is an inner functionality of the proc and stream functionalities. It represents a data fed
to a procedure or streamed by a downstream.

The param functionality has following properties:

groups string | [string] (None)
The groups property defines the groups the param belongs to. In case of a single group, the value can be a string.
In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the grouping
section.

range integer | [integer] (None)
The range property defines the range of valid values. The range property on param behaves exactly the same
as the range property on config.

width integer (bus width)
The width property defines the bit width of the param.

Following example presents the definition of a downstream with three parameters.

Sum_Reduce stream
type param_t param; width = 16
a param_t
b param_t
c param_t

7.9. Proc
The proc functionality represents a procedure called by the requester and carried out by the provider. The proc
functionality might contain param and return functionalities. Params are procedure parameters and returns rep-
resent data returned from the procedure.

The proc has associated signals at the provider side, the call signal and the exit signal. The call signal must be
driven active for one clock cycle after all registers storing the parameters have been written. The exit signal must be
driven active for one clock cycle after all registers storing the returns have been read. An empty proc (proc without
params and returns) by default has only the call signal. However, if an empty proc has the delay property set, then
it has both the call signal and the exit signal. A proc having only parameters has by default only the call signal.
However, if a proc having only parameters has the delay property set, then it also has the exit signal. A proc hav-
ing only returns has by default only the exit signal. However, if a proc having only returns has the delay property
set, then it also has the call signal. The existence or absence of call and exit signals is summarized in the below ta-
ble.

Proc call and exit signals occurrence                                  

Delay Set        Empty       Only Params    Only Returns Params & Returns
No call call exit                   call & exit
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Yes           call & exit       call & exit          call & exit              call & exit

The proc functionality has following properties:

delay time (None)
The delay property defines the time delay between parameters write end and returns read start.

The code generated for the requester must provide a mean for calling the procedure.

7.10. Return
The return functionality is an inner functionality of the proc and stream functionalities. It represents data re-
turned by a procedure or streamed by an upstream.

The return functionality has following properties:

groups string | [string] (None)
The groups property defines the groups the return belongs to. In case of a single group, the value can be a
string. In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the
grouping section.

width integer (bus width)
The width property defines the bit width of the return.

The following example presents the definition of a procedure returning 4 element byte array, and a single bit flag in-
dicating whether the data is valid.

Read_Data proc
data [4]return; width = 8
valid return; width = 1

7.11. Static
The static functionality represents data, placed at the provider side, that shall never change.

The static functionality has following properties:

groups string | [string] (None)
The groups property defines the groups the static belongs to. In case of a single group, the value can be a
string. In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the
grouping section.

init-value bit string | integer (obligatory)
The init-value property defines the initial value of the static.

read-value bit string | integer (None)
The read-value property defines the value that must be returned by the provider on the static read after
the first read.  If the read-value property is set, then the actual value of the static can be read only once.

reset-value bit string | integer (None)
The reset-value property defines the value of the static after the reset. If the reset-value is set, but a
bus or block containing the static is not resettable (reset = None), then the compiler shall report an
error. If both read-value and reset-value properties are set, then the static can be read one more
time after the reset.

width integer (bus width)
The width property defines the bit width of the static.

The static functionality may be used for example for versioning, bus id, bus generation timestamp or for storing
secrets, that shall be read only once. Example:
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Secret static
width = C8
init-value = C113
read-value = 0xFF

7.12. Status
The status represents data that is produced by the provider and is only read by the requester.

The status functionality has following properties:

atomic bool (true)
The atomic property defines whether an access to the status must be atomic. If atomic is true, then the
provider must guarantee that any change of the status value is seen as an atomic change by the requester.
This is especially important when the status spans more than single register, as in case of single register read
the change is always atomic.

groups string | [string] (None)
The groups property defines the groups the status belongs to. In case of a single group, the value can be a
string. In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the
grouping section.

read-value bit string | integer (None)
The read-value property defines the value that must be returned by the provider on the status read after
the first read.  If the read-value property is set, then the actual value of the status can be read only once.

width integer (bus width)
The width property defines the bit width of the status.

The code generated for the requester must provide a mean for reading the status.

7.13. Stream
The stream functionality represents a stream of data to a provider (downstream), or a stream of data from a
provider (upstream). An empty stream (stream without any param or return) is always a downstream. It is use-
ful for triggering cyclic action with constant time interval. A downstream must not have any return. An upstream
shall not have any param, and must have at least one return.

The stream functionality is very similar to the proc functionality, but they are not the same. There are two main
differences. The first one is that the stream must not contain both param and return. The second one is that
the code for the stream, generated for the requester, shall take into account the fact that access to the stream is
multiple and access to the proc is single. For example, lets consider the following bus description:

Main bus
P proc

p param
S stream

p param

The code generated for the requester, implemented in the C language, might include following function prototypes:

int Main_P(const uint32_t p);
int Main_S(const uint32_t * p, size_t count);

The stream has associated strobe signal at the provider side. The strobe signal must be driven active for one clock
cycle after all registers storing the parameters of a downstream have been written. It also must be driven active for
one clock cycle after all registers storing the returns of an upstream have been read.

The stream functionality has following properties.
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delay time (None)
The delay property defines the time delay between writing/reading consecutive datasets for a downstream/up-
stream.
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8. Parametrization
The FBDL provides the following three ways for description parametrization:

• constants,

• type definitions,

• types extending.

8.1. Constant
The constant represents a constant value. The value might be used in expression evaluations. The following code
presents a bus description with three functionalities, all having the same array dimensions and width.

Main width
const ELEMENT_COUNT = 4
const WIDTH = 8
C [ELEMENT_COUNT]config; width = WIDTH
M [ELEMENT_COUNT]mask; width = WIDTH
S [ELEMENT_COUNT]status; width = WIDTH

Constants must be included in the generated code, both for the provider and for the requester. This allows for having
a single source of the constant value.

A constant can be defined in a single line in the single-line constant definition or as a part of the multi-constant defi-
nition.

single_constant_definition ::= const identifier = expression newline

Examples of single constant definition:

const WIDTH = 16
const FOO = 8 * BAR
const LIST = [1, 2, 3, 4, 5]

multi_constant_definition ::=
const newline
indent
identifier = expression newline
{ identifier = expression newline }
dedent

Examples of multi-constant definition:

const
WIDTH = 16
FOO = 8 * BAR
LIST = [1, 2, 3, 4, 5]

const
ONE = 1
TWO = ONE + 1
THREE = TWO + 1

8.2. Type definition
The type definition allows for defining custom functionalities. Any custom functionality resolves to one of the built-
in functionalities. However, by defining custom functionality types it is possible to preset property values or to cre-
ate easily parametrizable functionalities.  The former leads to shorter descriptions and helps to avoid duplication.
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type_definition ::=
single_line_type_definition |
multi_line_type_definition

single_line_type_definition ::=
type
identifier
[ parameter_list ]
[ array_marker ]
declared_identifier | qualified identifier
[ argument_list ]
semicolon_and_property_assignments | newline

multi_line_type_definition ::=
type
identifier
[ parameter_list ]
[ array_marker ]
declared_identifier | qualified identifier
[ argument_list ]
functionality_body

parameter_list ::= ( parameters )

parameters ::= parameter { , parameter }

parameter ::= identifier [ = expression ]

Parameters in the parameter list might have default values, but parameters with the default values must prepend para-
meters without default values in the parameter list.

argument_list ::= ( arguments )

arguments ::= argument { , argument }

argument ::= [ declared_identifier = ] expression

Arguments in the argument list may be prepended with the parameter name. However, arguments with parameter
names must prepend arguments without parameter names in the argument list.

The below snippet presents examples of type definitions.

# Single line type definition
type cfg_t(w = 10) config; width = w; groups = "configs"

# Multi line type definition
type blk_t(with_status = true, mask_count) block

S [with_status]status
M [mask_count]mask

Main bus
type irq_t irq; groups = "irq"
I1 irq_t
I2 irq_t

C1 cfg_t
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C2 cfg_t(6)
C3 cfg_t(width = 8)

Blk1 blk_t(7)
Blk2 blk_t(with_status = false, mask_count = 11)

8.3. Type extending
The type extending allows extending any custom defined type, either by instantiation or by defining a new type.
This is mainly, but not only, useful when there are similar blocks with only slightly different set of functionalities.

Example:

type blk_common_t block
C1 config
M1 mask
S1 status

Main bus
Blk_C blk_common_t

C2 config
Blk_M blk_common_t

M2 mask
Blk_S blk_common_t

S2 status

This description is equivalent to the following description:

type blk_common_t block
C1 config
M1 mask
S1 status

type blk_C_t blk_common_t
C2 config

type blk_M_t blk_common_t
M2 mask

type blk_S_t blk_common_t
S2 status

Main bus
Blk_C blk_C_t
Blk_M blk_M_t
Blk_S blk_S_t

The type nesting has no depth limit. However, no property already set in one of the ancestor types can be overwrit-
ten. Also no symbol identifier defined in one of the ancestor types can be redefined.
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9. Scope and visibility

9.1. Import and package system
The FBDL has a concept of packages and allows importing packages into the file scope using the import statements.
A package consists of files with .fbd extension placed in the same directory. A package must have at least one file
and shall not be placed in more than a single directory. A package is uniquely identified by its path. The name of a
package is equivalent to the last part of its path. That is, it is the same as the name of the directory containing pack-
age files. However, if the package directory name starts with the "fbd-" prefix, then the prefix is not included in the
package name. For example, two packages with following paths foo/bar/uart and baz/zaz/fbd-uart
have exactly the same name uart.

A package can be imported in a single line using the single-line import statement or as a part of the multi-import
statement.

single_import_statement ::= import [ identifier ] string_literal

Examples of single import statement:

import "uart"
import spi "custom_spi"

multi_import_statement ::=
import newline
indent
[ identifier ] string_literal
{ [ identifier ] string_literal }
dedent

Example of multi import statement:

import
"uart"
spi "custom_spi"

The string literal is the path of the package. The path might not be complete, but shall be unambiguous. For exam-
ple, if two paths are visible by the import statement ("foo/bar/uart" and "baz/zaz/uart"), and both ends
with "uart", then "uart" path is ambiguous, but "bar/uart" and "zaz/uart" are not.

The optional identifier is an identifier that shall denote the imported package within the importing file. If the identi-
fier is omitted, then the implicit identifier for the package is the last part of its path.

9.1.1. Package discovery

Each FBDL compiler is required to carry out the package auto-discovery procedure. The procedure must obey fol-
lowing rules.

1) If the compiler working directory contains a directory named "fbd", then each of the "fbd" subdirectories is
considered a package directory if it contains at least one file with the ".fbd" extension. The name of the pack-
age is the same as the name of the subdirectory, unless it has "fbd-" prefix. In such a case, the prefix shall be
removed from the package name. If the name of the subdirectory matches exactly the "fbd-" pattern, then a
compiler must report an error on an invalid package name.

2) The compiler must recursively check all subdirectories of its working path (except the "fbd" directory in the
working directory that is described in rule number 1). Each subdirectory with a name starting with the "fbd-"
prefix is considered a package directory if it contains at least one file with the ".fbd" extension. If the name of
the subdirectory matches exactly the "fbd-" pattern, then a compiler must report an error on an invalid pack-
age name.
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3) The compiler must recursively check all subdirectories of the paths defined in the FBDPATH environment vari-
able. The variable may contain multiple paths separated by the ’:’ (colon) character. Each subdirectory with a
name starting with the "fbd-" prefix is considered a package directory if it contains at least one file with the
".fbd" extension. If the name of the subdirectory matches exactly the "fbd-" pattern, then a compiler must
report an error on an invalid package name.

Compilers are also free to have their own parameters allowing to provide extra paths to look for packages. The be-
low snippet presents a tree of example working directory.

|-- externals
| ‘-- bar
| |-- fbd-bar
| | ‘-- bar.fbd
| ‘-- gw
| ‘-- bar.vhd
|-- fbd
| |-- fbd-pkg1
| | ‘-- a.fbd
| |-- not-a-pkg
| | ‘-- c.txt
| ‘-- pkg2
| ‘-- b.fbd
|-- gw
| |-- modules
| | |-- a.vhd
| | ‘-- b.vhd
| ‘-- top.vhd
‘-- sw

‘-- foo.py

In this case each FBDL compilant compiler must automatically discover following three packages:

• bar - path "./externals/bar/fbd-bar",

• pkg1 - path "./fbd/fbd-pkg1",

• pkg2 - path "./fbd/pkg2".

9.2. Scope rules
The following elements define a new scope in the FBDL:

• package,

• type definition,

• functionality instantiation.

The following example presents all scopes.

const WIDTH = 16
const WIDTHx2 = WIDTH * 2
Main bus

width = WIDTH
const C20 = 20
Blk block

const C30 = 30
type cfg_t(WIDTH = WIDTH) config

atomic = false
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width = WIDTH
Cfg16 cfg_t
Cfg20 cfg_t(C20)
Cfg30 cfg_t(C30)

The WIDTH constant has package scope, and it is visible at the package level, in the Main bus instantiation and in
the Blk block instantiation. It would also be visible in the cfg_t type definition. However, the cfg_t type has
the parameter with the same name WIDTH. As a result, only the WIDTH parameter is visible within the type defini-
tion. The WIDTH parameter has a default value that equals 16. This is because at this point the name WIDTH de-
notes the package level WIDTH constant. Type parameters are visible inside the type definition, but not in the type
parameter list. The Cfg16 is thus a non-atomic config of width 16, the Cfg20 is a non-atomic config of width 20
and the Cfg30 is a non-atomic config of width 30.



FBDL Specification                                                                     39                                                                                        Rev. 1.0

10. Grouping
Grouping is a feature of the FBDL used to inform a compiler that particular functionalities might be accessed to-
gether, and their register location must meet additional constraints. This is achieved using the groups property.
The following functionalities can be grouped: config, irq, mask, static, status. A functionality may
belong to multiple groups (except irq), and groups must be registerified in the order they appear in the group lists.
The following snippet presents three grouped configs.

Main bus
type cfg_t; width = 8; groups = ["group"]
A cfg_t
B cfg_t
C cfg_t

Any FBDL compliant compiler must place all three configs (A, B, C) in the same register.

10.1. Single register groups
The single register groups are groups of elements that fit a single register. The overall width of all functionalities is
not greater than the single register width. In such a case, all functionalities must be placed in the same register. The
specification does not impose any specific order of the functionalities within the register, and it is left to the compiler
implementation. The following listing presents an example bus description with three single register groups.

Main bus
C0 config; width = 16; groups = ["read_write_group"]
M0 mask; width = 15; groups = ["read_write_group"]

C1 config; width = 16; groups = ["mixed_group"]
S11 static; width = 8; groups = ["mixed_group"]
S12 status; width = 8; groups = ["mixed_group"]

S21 status; width = 4; groups = ["read_only_group"]
S22 status; width = 7; groups = ["read_only_group"]

All functionalities of the "read_write_group" can be both read and written. The code generated by a compiler
for the requester must provide means for reading/writing the whole group as well as for reading/writing particular
functionalities of the group.

The "mixed_group" contains functionality that can be read and written (C1), as well as functionalities that can
only be read (S11, S12). The code generated by a compiler for the requester must provide a means for reading all
readable functionalities and writing all writable functionalities. It is valid even if the group has single readable or
single writable functionality. The compiler must also generate means for reading/writing particular functionalities of
the group. In the case of "mixed_group" this will result in two means doing exactly the same (writing the C1
config). However, it is up to the user to decide which of the means should be used. If it makes sense, it is perfectly
valid to use both of them in different contexts.

All functionalities of the "read_only_group" are read-only. In this case, the compiler must generate a mean
only for reading the group.  It must also generate means for reading particular functionalities.

10.2. Multi register groups
The multi register groups are groups with functionalities that overall width is greater than the width of a single regis-
ter. The specification does not impose any order of functionalities or registers in such cases, and it is left to the com-
piler implementation. However, the compiler must not split functionalities narrower or equal to the register width
into multiple registers. This implies that any functionality with a width not greater than the register width is always
read or written using single read or write access. The following snippet presents a bus description with one multi
register group.
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Main bus
C config; width = 10; groups = ["group"]
M mask; width = 10; groups = ["group"]
SC static; width = 10; groups = ["group"]
SS status; width = 10; groups = ["group"]

The compiler must generate code for the requester allowing to write all writable functionalities of the group as well
as the code allowing reading all readable functionalities of the groups. It must also generate means for reading or
writing particular functionalities.

There are multiple ways to place functionalities from the above example into registers. The following snippet
presents one possible way.

Nth register              Nth + 1 register
----------------------------- ----------------------
|| C | M | SC | 2 bits gap ||  || SS | 22 bits gap ||
----------------------------- ----------------------

However, the above arrangement might not be optimal if there is a need to read both SC and SS at the same time as
it would require reading two registers not a single one. The below listing presents how to group elements within the
group using subgroups.

Main bus
C config; width = 10; groups = ["csubgroup", "group"]
M mask; width = 10; groups = ["csubgroup", "group"]
SC static; width = 10; groups = ["ssubgroup", "group"]
SS status; width = 10; groups = ["ssubgroup", "group"]

The set of possible functionalities placements within the registers is now limited as the groups are registerified in the
order they appear. The below snippet shows a possible arrangement.

Nth register              Nth + 1 register
------------------------- ---------------------------
|| C | M | 12 bits gap ||  || SC | SS | 12 bits gap ||
------------------------- ---------------------------

This time reading both SC and SS requires reading only one register, while reading the whole "group" still re-
quires reading two registers.

10.3. Array groups
The array groups are groups with all functionalities being arrays. The groups do not necessarily have the same num-
ber of elements.

The code generated by a compiler, for an array group, for the requester must provide a means for writing an arbitrary
number of elements for all writable functionalities starting from an arbitrary index. It must also provide a mean for
reading an arbitrary number of elements for all readable functionalities starting from an arbitrary index.

The specification does not define what happens on access to the elements with an index greater than the length of
some arrays. This is because some of the target languages support special data types indicating that the value is ab-
sent (for example, None - Python, Option - Rust), while others use for this purpose completely valid values (0 -
C, Go).

10.3.1. Single register array groups

The single register array groups are array groups with overall single elements width not greater than the width of a
single register. The below listing presents an example bus description with a single register array group.

Main bus
type cfg_t config; width = 8; groups = "group"
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A [1]cfg_t
B [2]cfg_t
C [3]cfg_t
D [3]status; width = 8; groups = "group"

In the case of a single register array group all elements with corresponding indices must be placed in the same regis-
ter. Elements with consecutive indexes must be placed in consecutive registers. The below snippet presents a possi-
ble arrangement of elements for the example bus.

Nth register
-------------------------------
|| D[0] | C[0] | B[0] | A[0] ||
-------------------------------

Nth + 1 register
-------------------------------------
|| D[1] | C[1] | B[1] | 8 bits gap ||
-------------------------------------

Nth + 2 register
-------------------------------
|| D[2] | C[2] | 16 bits gap ||
-------------------------------

10.3.2. Multi register array groups

The single register array groups are array groups with overall single elements width greater than the width of a sin-
gle register. The below listing presents an example bus description with a multi register array group.

Main bus
type cfg_t config; groups = "group"

A [1]cfg_t; width = 16
B [2]cfg_t; width = 12
C [2]cfg_t; width = 12

In the case of multi register array group all elements with corresponding indices must be placed in consecutive regis-
ters. Also all elements with consecutive indexes must be placed in consecutive registers. Such a requirement guar-
antees that block access can always be used. The below snippet presents possible arrangement of elements for the
example bus.

Nth register                Nth + 1 register
------------------------------ ------------------------
|| C[0] | B[0] | 8 bits gap ||   || A[0] | 16 bits gap ||
------------------------------ ------------------------

Nth + 2 register                 Nth + 3 register
------------------------------ ------------------------------
|| C[1] | B[1] | 8 bits gap ||   || C[2] | B[2] | 8 bits gap ||
------------------------------ ------------------------------

10.4. Mixed groups
The mixed groups are groups with both single functionalities and array functionalities. The below listing presents an
example bus description with a mixed group.

Main bus
C config; width = 10; groups = "group"
M mask; width = 7; groups = "group"
S status; width = 8; groups = "group"
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CA [3]config; width = 10; groups = "group"
SA [3]config; width = 12; groups = "group"

In case of mixed groups array functionalities shall be registerified as the first ones assuming a pure array group. Sin-
gle functionalities shall be later placed in the gaps created during array registerification. If there are no gaps, or gaps
are not wide enough, then all reamining single functionalities shall be registerified as single register group or multi
register group. If the gaps are wide enough to place single functionalities there, but for some reason it is not desired,
then subgroup can be defined to group single functionalities of the mixed group as the first ones. The below snippet
presents a possible arrangement of elements for the example bus.

Nth register                  Nth + 1 register
----------------------- ------------------------------------
|| CA[0] | SA[0] | C ||   || CA[1] | SA[1] | M | 3 bits gap ||
----------------------- ------------------------------------

Nth + 2 register
------------------------------------
|| CA[2] | SA[2] | S | 2 bits gap ||
------------------------------------

10.5. Virtual groups
Virtual groups are groups that name starts with the underscore (’_’), for example "_group". Virtual groups are
used to group functionalities without generating the group interface for the requester code.

10.6. Registerification order
Groups must be registerified in the order they appear in the groups lists. A compiler must issue an error if the order
of any groups is not the same in all groups lists. If the order is not unequivocal, then the compiler is free to choose
the order. However, as the registerification results have to be deterministic and reproducible for a particular com-
piler, the order criterion has to be fixed in case of ambiguous order of groups. The most natural criteria are proba-
bly:

• Alphabetical order. Groups with ambiguous order are sorted alphabetically before registerification.

• Occurrence order. Groups with ambiguous order are registerified in parsing order. For example, if the order of
groups "b" and "a" is ambiguous, and group "b" first occurrence is in line number 80, and group "a" first oc-
currence is in line number 120, then group "b" is registerified as the first one.

The order of groups might be used to prioritize the groups, so that access to some groups is more efficient than to the
other groups. The below listing serves as an example of groups order used for optimizing access to a particular
group.

Main bus
C1 config; width = 20; groups = ["a"]
C2 config; width = 12; groups = ["a", "b"]
C3 config; width = 20; groups = ["b"]

As group "a" has higher priority than group "b" (its index is lower in the groups list for functionality C2), access
to the group "a" will be more efficient, as functionalities C1 and C2 will be placed in the same register. A possible
arrangement is presented in the below snippet.

Nth register     Nth + 1 register
------------- ----------------------
|| C1 | C2 ||  || C3 | 12 bits gap ||
------------- ----------------------

If the order of the groups in the groups list for functionality C2 was reverse, then the access to the group "b" would
be more efficient. A possible arrangement of functionalities in such a case could look as follows.
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Nth register     Nth + 1 register
------------- ----------------------
|| C2 | C3 ||  || C1 | 12 bits gap ||
------------- ----------------------

The below listing presents a description of groups with ambiguous order.

Main bus
C1 config; width = 10; groups = ["a", "b", "c"]
C2 config; width = 10; groups = ["a", "d", "c"]
C3 config; width = 10; groups = ["a", "b"]
C4 config; width = 10; groups = ["a", "d"]

The order of groups "b" and "d" is not unequivocal. However, whether group "b" is registerified before the group
"d" is not even important in this case, as the optimal structure is determined by three facts:

• both groups "b" and "d" are subgroups of group "a",

• the intersection of groups "b" and "d" is an empty group,

• both groups "b" and "d" have higher priority than group "c".

Possible arrangement of the functionalities is presented in the below snippet.

Nth register              Nth + 1 register
-------------------------- --------------------------
|| C1 | C3 | 2 bits gap ||  || C2 | C4 | 2 bits gap ||
-------------------------- --------------------------

10.7. Irq groups
The irq groups are used for interrupt grouping. Grouped irqs have a common interrupt consumer signal. Each irq
must belong at most to one group and each irq group must have at least two irqs. Irqs belonging to the same group
might have different values of the producer trigger (in-trigger), but all of them must have the same value for the
consumer trigger (out-trigger). In the case of level-triggered interrupt consumer the information on the inter-
rupt source can be read from the interrupt group flag register.

The below snippet shows an example of an irq group for level-sensitive interrupt consumer.

Main bus
type irq_t irq; add-enable = true; groups = "IRQ"
IRQ0 irq_t
IRQ1 irq_t; clear = "On Read"
IRQ2 irq_t; in-trigger = "Edge"
IRQ3 irq_t; in-trigger = "Edge"; clear = "On Read"

The picture below presents a possible logical block diagram of the irq group with level trigger for the interrupt con-
sumer and enable register. The "Clear On Read" signal is driven on every Flag Register read. The "Explicit Clear"
signal must be driven when the requester calls a means for clearing given interrupt flags. Probably the easiest form
of the "Explicit Clear" implementation is clear on Flag Register write, where the clear bit-mask is the value of the
data bus. The Flag Register is to some extent a virtual register, as it has an address, but it does not have any storage
elements. The flag is stored in the interrupt producer in case of a level-triggered producer or in the Edge Detector in
case of an edge-triggered producer.
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10.8. Param and return groups
Param and return groups are used to group proc or stream parameters or returns. Such a kind of grouping may
be necessary for performance optimizations, as the requester may store parameters or returns in a single list or in
multiple distinct lists. Param and return groups help to avoid data reshuffling before or after the access. Param and
return groups are independent. The below snippet presents a valid description with a single proc with one param
and one return group.

Main bus
P proc

p1 param; groups = "grp"
p2 param; groups = "grp"
r1 return; groups = "grp"
r2 return; groups = "grp"

Param and return groups may contain subgroups. Single param or return can belong to groups which sum is empty
or is equal to one of the groups. The below snippet presents examples of two invalid and two valid parameters
grouping.

Main bus
# Param p2 belongs to group "b" and "c".
# However, neither "b" is subgroup of "c"
# nor "c" is subgroup of "b".
Invalid1 proc

p1 param; groups = ["a", "b"]
p2 param; groups = ["a", "b", "c"]
p3 param; groups = ["a", "c"]
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Invalid2 proc
p1 param; groups = "a"
p2 param; groups = ["a", "b"]
p3 param; groups = "b"

Valid1 proc
p1 param; groups = "a"
p2 param; groups = "a"
p3 param; groups = "b"
p4 param; groups = "b"

Valid2 proc
p1 param; groups = ["a", "b", "c"]
p2 param; groups = ["a", "b", "c"]
p3 param; groups = ["a", "b"]
p4 param; groups = "a"
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